最近,《细胞》杂志发表文章,称研究发现一种名叫lin28a的蛋白质,这种蛋白质能够有助于组织的修复,这将对治疗癌症有积极作用。
研究表明,那些会产生lin28a型蛋白质的老鼠,其毛发会比普通的老鼠长得更快,如果这种老鼠的耳朵被刺伤,则几乎能够完全愈合。而携带这种蛋白质的老鼠在幼年时被剪掉脚趾,则会完全长出新的来。
然而,研究人员发现,并不是带有lin28a蛋白质就一定具备特别的愈合能力。比如,心脏再生就没有表现出任何改进。如果老鼠已经进入青年期,那么其被剪掉的脚趾就没法再长回来了,然而其毛发仍会迅速生长,耳朵的软骨和结缔组织还会继续生长。
密歇根大学的daniel goldman一直研究lin28a在斑马鱼视网膜再生过程中的作用,他认为,类似于心脏的组织具有某种抗拒重置的机制。
波士顿儿童医院细胞生物学家吴轼昌也是该项研究的作者之一,他说,事实上,代谢机制在组织愈合中的作用是最令人惊讶的,大多数生物学家都认为只有特定要素才能够产生愈合效用,而这一最新的研究结果则表明,每一个细胞都可以做到这一点。这一最新的研究成果要实现临床医疗应用还有很长的道路要走。
这个概念最早是在1995年提出的,它在本质上指的是在大规模水平上研究蛋白质的特征,包括蛋白质的表达水平,翻译后的修饰,蛋白与蛋白相互作用等,由此获得蛋白质水平上的关于疾病发生,细胞代谢等过程的整体而全面的认识。
目前,在蛋白质功能方面的研究是极其缺乏的。大部分通过基因组测序而新发现的基因编码的蛋白质的功能都是未知的,而对那些已知功能的蛋白而言,它们的功能也大多是通过同源基因功能类推等方法推测出来的。有人预测,人类基因组编码的蛋白至少有一半是功能未知的。因此,在未来的几年内,随着至少30种生物的基因组测序工作的完成,人们研究的重点必将转到蛋白质功能方面,而蛋白质组的研究正可以完成这样的目标。在蛋白质组的具体应用方面,蛋白质在疾病中的重要作用使得蛋白质组学在人类疾病的研究中有着极为重要的价值。
疾病的产生可能仅仅是因为基因组中一个碱基对的变化,如β-血红蛋白第六位上的Glu变为Val就导致了镰刀型细胞贫血症的发生。然而,对于大多数疾病来说,其疾病发生机制要复杂的多。因此,对于疾病发生的分子机制的认识就需要一些能够解决这些复杂性的方法来完成。而作为细胞中的活性大分子,蛋白质无疑是与疾病相关的主要分子,蛋白表达水平的改变是与疾病,药物作用或毒素作用直接相关的。因此,基于蛋白质整体水平的蛋白质组学在人类疾病研究中无疑将发挥重要作用。
现在,蛋白质组学在人类疾病中的应用已经在一些疾病如皮肤病,癌症,心脏病中广泛开展了,而这些研究则主要集中在这样几个方面:寻找和疾病相关的单个蛋白,整体研究某种疾病引起的蛋白表达或修饰的变化,利用蛋白质组寻找一些致病微生物引起的疾病的诊断标记和疫苗等。下面,我们就将就蛋白质组学的基本技术和这些领域的应用作一些介绍。
蛋白质组学研究的基本技术
对于蛋白质组学的研究来说,它的最基本的实验手段就是利用双向凝胶电泳(two-dimensional protein electrophoresis, 2DE),在整个 基因组水平上检测蛋白质表达的情况。双向凝胶电泳首先利用等电点聚焦来分离不同等电点的蛋白,再利用SDS-PAGE来分离不同分子量的蛋白,其分辨率是非常高的。微克级的蛋白质就可以被很好的分辨开了,如在微克级水平上,有人从一个蛋白混合物中最多分开了11200种蛋白质,数量是非常可观的。因而,微克级的蛋白的双向凝胶电泳常被用来初步检测表达或修饰有变化的蛋白。然后,同样的蛋白混合物样品可用于毫克级的2DE,这样,电泳图谱上的每一个多肽就可被纯化并进行下一步的分析,如质谱,末端或中间的氨基酸序列分析等。
仅仅进行双向凝胶电泳显然是远远不够的,因为由双向电泳得到的蛋白质表达情况的变化并不能和具体的何种蛋白表达出了变化联系起来。而一些如蛋白质印迹或凝集素亲和印迹等传统技术对于这方面的信息也帮助不大。为了鉴定这些由电泳得来的蛋白,质谱(MS,mass spectrometry)被广泛应用在蛋白质组学中。对于蛋白质的鉴定,有两种方法用的最为广泛,即MALDI-MS ( matrix-assisted laser desorption ionization)和ESI-MS (electrospray ionization)。这两种方法各有自己的 适用范围,通常前者对于分析高分子量的蛋白更有效,而后者对于蛋 白的检测灵敏度更高,常可达到飞克级水平以下。质谱可以用于蛋白质分析主要是因为它可以提供特定蛋白的不同方面的结构信息,如它可直接测定蛋白或多肽的分子量信息,也可用来获得一些蛋白质序列信息等。同时,质谱也可通过多肽片段分子量的改变来得到一些关于糖型,磷酸化和其它翻译后修饰的数据。因此,质谱对于蛋白质的鉴定是非常重要的,而它的进展也无疑会大大促进蛋白质组学的研究进展。
单个的疾病相关蛋白的寻找
在疾病发生过程中,由于和疾病相关的遗传信息的变化常常会导致蛋白的种类和数量发生变化,而这些变化是可以被可以被高解析度的双向凝胶电泳所检测到的,这就是利用蛋白质组学寻找和鉴定疾病相关蛋白的依据。
结肠癌的产生是一个包含了多个基因突变的多步过程,这其中包括抑癌基因的功能丧失,癌基因的活化等。然而,肿瘤发生的具体机制仍不清楚。对于这样一种涉及多种蛋白的疾病,人们已经开始利用蛋白质组学来分析结肠粘膜发生恶性转化后的多肽的变化了。对照15例结肠癌病人和13例正常人的结肠表皮的双向凝胶电泳结果发现,二者分别含有882个和861个点,而这些点中,有一个蛋白,其分子量为 13kDa,等电点为5.6,它只在肿瘤组织中专一性的表达。在15个癌症样品中,有13例的此蛋白表达上调,占到了87%。进一步的研究也证实了这个蛋白在不同程度的癌症引起的发育异常中也有明显的表达水平上的差异。由双向电泳发现的这个可能与癌症相关的蛋白到底是什么蛋白呢?从电泳的凝胶上得到的这个点经胰蛋白酶水解后,得到的肽段由μ-HPLC分离后测序。测序的结果拿到两个序列,LGHPDTLNQ和VIEHMEDLDTNADK,这与钙粒蛋白B的情况完全吻合。进一步的用MALDI-MS分析的结果也证实了这个蛋白就是钙粒蛋白B。同时,结合以前的发现,即由钙粒蛋白B和A组成的异源二聚体蛋白钙防卫蛋白在胃肠肿瘤病人的粪便样品中含量有很大提高,钙粒蛋白B在肿瘤性转化的组织中的高专一性存在显示出它在结肠癌的产生中具有重要的作用。尽管蛋白的具体功能还需要进一步的阐明,但这个例子已经可以证明,由蛋白质组学方法寻找疾病相关蛋白肯定是可行的。
这方面的另一个例子是关于肝细胞癌的研究。双向凝胶电泳已经被成功的用于发现化学诱导的鼠的肝癌相关蛋白中。而双向电泳和蛋白质化学方法的联合应用也更深化了对这些癌症相关蛋白的具体特征的认识。在用N-甲基-N-亚硝基脲诱导了鼠的肝癌后,利用双向电泳发现了一些表达有变化的蛋白,经氨基酸序列分析后,分析其中一个蛋白是来源于肝癌的醛糖还原酶样蛋白( hepatoma-derived aldose reductase-like protein)。这个蛋白分子量为35KDa,等电点为7.4,它是 一种在肝癌和胚胎的肝中特异性表达的蛋白。利用双向电泳得到了这样一种可能和癌症相关的蛋白后,一些蛋白质化学的方法可用来对这种蛋白和疾病的相关性作进一步的研究。有人利用免疫组化的方法发现,直接针对来源于肝癌的醛糖还原酶样蛋白的抗体FR-1表明,这个蛋白在化学诱导的肝癌小鼠的发生肿瘤转化的前期和转化的早期就已经有很强的表达了,而正常肝组织中并无表达。这都是该蛋白涉及肝癌发生过程的有力证据。
已有的一些关于此蛋白的研究表明,醛糖还原酶是还原酶超家族的成员,在山梨糖醇途径中它可以催化葡萄糖向山梨糖醇的转化,而且在一些糖尿病的并发症的发生中它也有作用。作为一种酶,它可以水解一些生物异源物质等,因此它也参与了一些解毒过程。而在肝癌发生过程中,一些解毒酶的表达水平或活力增高已是公认的事实了。对于醛糖还原酶这一类有解毒功能的蛋白来说,只有由双向电泳发现的肝癌来源的醛糖还原酶样蛋白是与肝癌相关的。它首先在胚胎肝中表达,但在成年的肝中就不表达了。肝癌发生时,它又重新表达了。因此,目前可以初步推断,醛糖还原酶样蛋白在肝癌发生过程中是与肝的解毒过程相关的。现在,在人的肝癌中,也找到了鼠的醛糖还原酶样蛋白的同源蛋白,它同样是在人的不同组织中选择性表达的。
疾病相关蛋白的整体研究
对于大多数疾病来说,疾病造成的往往不只一个或几个蛋白的变化,参与疾病过程的蛋白的数目也是很大的,因此除了通过双向凝胶电泳来寻找与疾病相关的单个蛋白外,通过蛋白质组对表达情况有变化的蛋白在整体水平上的研究同样是非常重要的。目前,在利用双向凝胶电泳进行的蛋白整体水平的研究方面,扩张性的心肌病(Dilated cardiomyopathy, DCM)是一个较好的例子。
扩张性的心肌病是一种严重的心脏疾病,对于这种疾病的致病机理和涉及的分子都还不清楚,而且,对于这样一种复杂的疾病来说,也不可能仅由一种致病机理造成。因此,对于这样的疾病,从整体的蛋白质组水平来研究是极为必要的。另外,相对其它组织而言,主要由心肌细胞组成的心脏是一种相对均一的组织,这也为用双向凝胶电泳进行蛋白质组的研究提供了良好的基础。对DCM的蛋白质组的研究在九十年代初就已经开始了,目前,心肌的双向凝胶电泳的数据库已经建立。尽管国际上各实验室之间的数据之间有着如不同的样品制备,不同的等电聚焦条件,不同的凝胶大小等差异,但这些数据的比较证明,在大多数情况下,不同蛋白的点的位置还是相对稳定的,可以进行大规模的比较研究。
在Knecht等人的研究中,得到了一个高解析度的具有大约3300个心肌蛋白点的双向电泳结果,并对其中的150个蛋白进行了氨基酸分析,N端和中间的Edman降解以及MALDI-MS等一系列鉴定。而对几百个正常和扩张性心肌病的病人的2-DE结果比较发现,两者的蛋白条带具有可比性。除去一些可能由不同的疾病有关参数如患病程度,用药情况,病人年纪等因素造成的无重复性的点的多少和强度的变化外,患病者和正常人有25种蛋白在统计学上具有显著差异。这些即是DCM相关蛋白。而这个结果是在对几百个样品的大规模研究的基础上得来的,而也只有大规模的研究,才能体现出这个结果在实际应用前景上的价值。对于这几十种疾病相关蛋白,我们可以用一些其它方法,如免疫组化,酶活测定等,来作进一步的鉴定,确认它们与疾病的相关性以及它们在疾病中的作用等。这些工作都是在基于蛋白质组的研究基础上进一步的深入而进行的,显然,在几百个DCM患者和正常对照的样品的大规模水平上对疾病相关蛋白的整体研究无疑是最为基础和有效的。
病原微生物的蛋白质组学分析
近几年来,关于传染病的研究变得比原来更为重要。一些新的传染原,如Borrelia burgdorferi,HIV,Ebola病毒等的出现,使得一些原来认为已被控制的疾病如结核,多抗药性的链球菌属感染等又有所增 加。因此,对于有毒力的微生物和病毒进行蛋白质组学的分析就显得非常必要,它可以用来寻找和研究毒力因子,抗原,疫苗等,而这些对于疾病的诊断,治疗和防治是极为重要的。目前,已经有18种微生物的基因组测序已经完成,而另有60多种的微生物的基因组测序正在进行当中,这些基因序列的信息和相对真核组织来说少得多的基因数量都为蛋白质组的研究提供了良好的基础。
疏螺旋体属的Borrelia burgdoferi是引起多系统疾病人类Lyme氏疏 螺旋体病的主要致病因子。这种疾病的症状开始时常表现为一些环状红斑样皮疹以及流感样症状,发展下去也会造成一些神经系统的并发症和关节炎等。目前,对这种疾病的诊断主要是通过临床症状的判断并辅以血清学实验如ELISA,免疫印迹等来证实。由于这些实验具有不同程度的敏感性和特异性,诊断并不是标准化的。利用蛋白质组学的研究提供一些新的较为标准的诊断标记就显得尤为必要了。
Borrelia burgdoferi的染色体上有853个基因,它的11个质粒上有额 外的430个基因。它的双向凝胶电泳图谱大约有300个点,由这些蛋白点就可以寻找免疫相关抗体等蛋白了。将银染的 Borrelia burgdoferi的 2DE凝胶上的其中217个点编号后,用来源于兔子的多克隆抗体采用免 疫杂交的方法鉴定了一些抗原在胶上的位置,如外表面蛋白A(OspA),OspB,OspC,p83/100,p39,flagellin p41等。除了p83/100外,所有 抗原在2DE图上都存在于不只一个点上。利用不同表现症状的Lyme氏 疏螺旋体病病人的血清与疏螺旋体的2DE图进行印迹分析发现,具有 红斑迁移症状的十个病人的血清中分别含有60种和88种抗原的IgM型和IgG型抗体,而关节炎病人的血清中含有15种抗原的IgM抗体和76种不同抗原的IgG抗体,晚期神经疏螺旋体病人的血清中则含有33种抗原的IgM抗体和76种抗原的IgG抗体,但在这三种不同疾病时期的病人血清中都含有这样几种抗原的抗体,OspA,OspB,OspC,flagellin,p83/100,p39等,这几个抗原同时也是原来血清学实验中用来诊断的标记,蛋白质组的结果验证了原来诊断的合理性,同时,2DE的结果也发现了一些原来并没有发现的抗原,这些正是一些新的潜在的诊断标记。更多诊断标记的发现对于诊断的标准化和准确性的提高大有帮助。
弓形虫病是由原生动物Toxoplasma gondil寄生感染引起的,全世 界约有30%的人携带此种寄生虫,而在欧洲,弓形虫病是发生频率最 高的传染病之一,因此,这种疾病的危害是相当高的。在健康人群中,寄生虫的感染通常是无症状的或症状极其轻微的,但如果是怀孕期间感染,寄生虫就会通过胎盘,并造成胎儿的死亡。随着怀孕时间的增加,寄生虫穿透的可能性也会增加。因此,确定感染的时间就显得非常重要了。另一方面,怀孕不同时期的感染后果也是不同的,在怀孕早期,器官形成过程时的感染危害可能是致死的,而怀孕的后期,胎儿的感染经常会导致一些并发症的出现如视网膜色素异常等。如果在怀孕期间感染的妇女得到了充分的治疗,胎儿感染的可能和后果的严重性都会大大降低。因此,及时的诊断和准确判断感染时间对于弓形虫病的治疗是非常重要的。
但实际上,90%以上的怀孕妇女的初期感染都不能被及时发现。目前的诊断主要是依靠血清学手段和PCR方法,而用血清学的方法来检测抗体对于一些无免疫应答的和怀孕的病人显然是不够的,而潜伏性感染致病恰恰是经常发生在无免疫应答的人中。如在艾滋病患者中, T.gondil就是导致脑内病变并致死的主要原因。由这些都可看出,疾病的有效的诊断对于有效的治疗是非常关键的。同样,蛋白质组水平上的研究为这方面的进展提供了非常有力的方法。我们可以用不同感染情况的病人的血清和T.gondil的2DE图进行免疫印迹来寻找和感染相关的抗 原来作为诊断标记。这些不同的血清包括:急性感染弓形虫病的 怀孕妇女的血清,急性弓形虫病的非怀孕病人的血清,潜伏性感染弓形虫的尚未发病者的血清。结果显示,2DE图上的9个点可以和感染者血清中的任一类型的免疫球蛋白反应,且这种反应和感染的状态和发病与否无关,这9个点就可用来作为T.gondil 感染的标记。另外有7个点 和抗体的反 应则与抗体类型或发病情况有关,可用来区分不同疾病状 况如潜伏期和急性期等,它们同样可作为进一步判断感染状态的诊断标记使用。
小结
双向凝胶电泳就象一个分子显微镜,将复杂的蛋白混合物分离开来,而进一步的由疾病和对照的比较可以找到一些疾病相关蛋白。目前,蛋白质组的应用最多的领域就是通过疾病和对照的2DE条带的比较寻找单个的疾病相关蛋白,钙粒蛋白B在结肠癌中的表达上调和肝癌来源的醛糖还原酶样蛋白在鼠的肝癌发生过程中的重新表达就是两个典型的例子。这些蛋白和疾病的相互关系还可以通过免疫组化等方法进一步的鉴定。而另一方面,利用蛋白质组来进行整体水平上的研究也是不可缺少的。如对扩张性心肌病的研究就显示出了患病者和对照的 25种蛋白的显著差异,人的心肌的包括了3300个蛋白的双向凝胶电泳数据库也已经建立了。对于整体水平上的研究而言,规模越大,使用样品数目越多,对分子机制的研究可能就越深入,因而国际间的协作是非常重要的。蛋白质组学应用的另一领域是在致病微生物的诊断用蛋白的寻找方面,如在上面所提到的Borrelia burgdoferi引起的Lyme氏 疏螺旋体病和Toxoplasma gondil引起的弓形虫病等,由蛋白质组学得 来的诊断标记甚至还可用来区分不同的疾病时期,这些都为有效的 诊断检测的发展提供了基础。蛋白质组学的研究在蛋白质功能和人类疾病研究方面为我们开辟了一个新的领域,尽管它还处于刚刚起步的不成熟期,很多技术还有待完善和发展,但它的潜力是不可低估的,在将来,蛋白质组在人类疾病中的应用也必然会更加广泛和深入。
ras基因首先在Harvery鼠肉瘤病毒(Ha-MSV)和Kirsten鼠肉瘤病毒(Ki-MSV)的子代基因中被发现,在这种子代病毒中发现含有来源于 宿主细胞 的基因组的新基因序列,此后人们将这种宿主细胞基因称为ras基因。
KRAS基因突变与肺癌、胰脏癌和大肠癌的发生有着密切的关系,52﹪的肺腺癌病人有KRAS基因的突变。台湾地区胰脏癌的病人的研究结果显示,有高达90﹪突变率。
1982年Weinberg和Barbacid首先从人膀胱癌细胞系中分离出一种转化基因,可使 NIH 3T3 细胞发生恶性转化,而从正常人组织中提取的DNA则无此种作用。随后,Santos与Parada发现上述转化基因并非新型基因,而是Harvery鼠肉瘤病毒ras基因的人类同源基因,命名为H2ras。同年,Krontiris在人肺癌细胞中发现Kirsten鼠肉瘤病毒基因的同系物,称为K-ras.另一种相似的基因是在人 神经母细胞瘤 DNA感染NIH3T3细胞时发现的与ras类似的基因,称为N2ras,此种基因和病毒无关.
[编辑](javascript:;)[ 语音](javascript:;)
ras基因 在进化中相当保守,广泛存在于各种 真核生物 如哺乳类,果蝇,真菌,线虫及酵母中,提示它有重要的生理功能.哺乳动物的ras基因家族有三个成员,分别是H-ras,K-ras,N-ras,其中K-ras的第四个外显子有A,B两种变异体.各种ras基因具有相似的结构,均由四个外显子组成,分布于全长约30kb的DNA上.它们的编码产物为 相对分子质量 2.1万的蛋白质,故称为P21蛋白.已证明,H-ras位于人类11号染色体短臂上(11p15.1~p15.3),K-ras位于12号染色体短臂上(12p1.1~pter),N-ras位于1号染色体短臂上(1p22-p32),除了K-ras第四个外显子有变异外,每个ras基因编码P21的序列都平均分配在四个外显子上,而内含子的序列及大小相差很大,因而整个基因也相差很大,如人K-ras有35kb长,而N-ras长为3kb.由于有两个第四号外显子,K-ras可以两种方式剪接,但编码K-ras-B的mRNA含量高.除K-ras-B含有188个氨基酸外,其他两种 Ras蛋白 均含有189个氨基酸.
[编辑](javascript:;)[ 语音](javascript:;)
3.1 Ras蛋白的结构
Ras蛋白为膜结合型的GTP/GDP 结合蛋白 , 相对分子质量 为2.1万,定位于细胞膜内侧.它由188或189个氨基酸组成,它的第一个结构域为含有85个 氨基酸残基 的 高度保守序列 ,接下来含有80个氨基酸残基的结构域中,Ras蛋白结构轻微不同,除了K2Ras末端25个氨基酸由于不同的外显子而分为A型和B型外,其余Ras家族成员最后四个氨基酸均为Cys1862A2A2X2COOH序列.Ras蛋白存在4种异构型:H2Ras,N2Ras,K2Ras4A和K2Ras4B,它们是3种基因的产物,其中K2Ras4A和K2Ras4B是同一基因不同剪接的结果.
3.2 Ras蛋白的功能
Ras(P21)蛋白位于细胞膜内侧,它在 传递细胞 生长分化信号方面起重要作用.它属于 三磷酸鸟苷 (GTP)结合蛋白(一种细胞信息传递的耦联因子),通过GTP与 二磷酸鸟苷 (GDP)的相互转化来调节信息的传递.P21与GTP和GDP有很强的亲和性,而且有较弱的GTP酶活性.正常情况下P21和GDP结合处于失活状态,当细胞外的生长分化因子把信号传导到胞膜内侧的P21时,可增强P21与GTP结合活性,使P21和GTP结合成为激活状态,信号系统开放.因为P21有GTP酶活性,可使GTP水解成GDP,P21和GDP结合后P21失活,信号系统关闭.正常情况下P21的GTP酶活性很弱,当和 GTP酶激活蛋白 (GAP)结合后其水解速度可提高1万倍而使P21失活.P21和GDP结合后可以激活鸟苷酸释放蛋白(GNRP),GNRP使P21释放GDP结合GTP,因此通过GTP和GDP的相互转化可以有节制地调节P21对信号系统的开启和关闭,完成生长分化信号传入细胞内的过程.
Ras蛋白在合成后,需要经过两种方式翻译后修饰,才可定位于细胞膜内侧.①通过FTase在Ras蛋白羧基端的CAAX四肽结构中的Cys残基上加上一个类异戊二烯基团法尼基,随后AAX残基从C端上断裂脱落,法尼基化Cys
羧甲基化,此修饰使RasC端具有疏水性;②N2或H2ras的 半胱氨酸 的S2酰基化,长链的S2酰基取代基使ras具有疏水性.有研究表明,激活ras的表达能增强血管生长因子(例如VEGF/VPF)的表达,提示Ras蛋白在 血管生成 中发挥作用,抑制Ras蛋白活性能抑制依赖Ras蛋白的肿瘤细胞增殖,也能干扰血管生成.同时,激活Ras蛋白还能抑制凋亡.Ras蛋白过度表达还能增加药物和紫外光诱导的凋亡,可能的机制是 ras癌基因 增强了细胞分解 过氧化氢 的能力从而抑制凋亡.然而,这个假说还需进一步研究.
[编辑](javascript:;)[ 语音](javascript:;)
4.1 ras基因激活的方式
作为原癌基因的ras基因被激活以后就变成有致癌活性的癌基因.ras基因激活的方式有3种:基因点突变,基因大量表达,基因插入及转位.其中ras基因被激活最常见的方式就是点突变,多发生在N端第12,13和61密码子,其中又以第12密码子突变最常见,而且多为GGT突变成GTT.不同突变位点对P21的活化机制不同,第12密码子突变可以减弱P21内在的GTP酶活性,并使细胞凋亡减少,细胞间接触抑制减弱;第61密码子突变可削弱GAP对P21的内在GTP酶活性,并可减弱GAP与P21结合的稳定性.
4.2 ras基因突变致癌的机制
ras基因激活构成癌基因,其表达产物Ras蛋白发生构型改变,功能也随之改变,与GDP的结合能力减弱,和GTP结合后不需外界生长信号的刺激便自身活化.此时Ras蛋白内在的GTP酶活性降低,或影响了GTP的活性,使Ras蛋白和GTP解离减少,失去了GTP与GDP的有节制的调节,活化状态的Ras蛋白持续地激活PLC产生第二信使,造成细胞不可控制地增殖,恶变.同时细胞凋亡减少,细胞间接触抑制增强也加速了这一过程.
[编辑](javascript:;)[ 语音](javascript:;)
Ras2MAPK信号转导途径
5.1 Ras上游通路
Ras能被复杂的网络激活.首先,被磷酸化激活的受体如PDGFR,EGFR直接结合 生长因子受体 结合蛋白(Grb2),这些受体也可以间接结合并磷酸化含有src同源区2(SH2)结构域的蛋白质(例如Shc,Syp)后,再激活Grb2.第二,Grb2的src同源区3(SH3)结构域与靶蛋白如mSos1,mSos2,C3G及发动蛋白(dynamin)结合.C3G与连接蛋白Crk的SH3结构域结合后耦联酪氨酸磷酸化而激活Ras.Crk也能结合mSos1激活Ras.Grb2与激活的受体结合促进鸟苷酸交换因子(Sos)蛋白定位在与Ras相邻的细胞膜上.这样,Sos与Ras形成复合体,GTP取代GDP与Ras结合后,Ras被激活,当GTP水解成GDP后Ras失活.Ras具有内在GTPase活性,它的活性可被RasGAPs调节,因而RasGAPs扮演Ras活性调节剂的角色.另外,Ras失活也受到高度调节。有三种蛋白质能水解GTP使Ras失活,它们分别是P120GAP,neurofibromin和GAP1m,统称为RasGAPs.
5.2 Ras下游通路
5.2.1 Ras/Raf通路
至今,Ras/Raf通路是最明确的信号转导通路.当GTP取代GDP与Ras结合,Ras被激活后,再激活丝苏氨酸激酶级联放大效应,招集细胞浆内Raf1丝苏氨酸激酶至细胞膜上,Raf激酶磷酸化MAPK激(MAPKK),MAPKK激活MAPK.MAPK被激活后,转至细胞核内,直接激活转录因子.另外,MAPK刺激Fos,Jun转录因子形成转录因子AP1,该因子与myc基因旁的特异的DNA序列结合,从而启动转录.myc基因产物也是转录因子,它能激活其他基因.最终,这些信号集中起来诱导D型Cyclin的表达和活性.D型Cyclin与Cyclin依赖性激酶(如CDK4和CDK6)形成复合体,该复合体的形成促使细胞从G1期进入S期.因此,Ras/Raf通路在受体信号和G1期进展之间起着关键作用.然而,Ras/Raf通路不是调控G1期进展的惟一通路.Ras与Raf单独结合不能促进Raf激酶活性,同时,Raf能被不依赖Ras的机制所激活(例如能被Src酪氨酸激酶和PKC所激活),MAPK也能被不依赖Ras机制(如通过调节整合素的活性)所激活.表明级联反应每一个信号蛋白质都能被多个上游蛋白质所激活,而它们也可能有另外的靶蛋白.另一个重要的Ras通路效应物是Cyc2lin依赖性激酶抑制剂P21Waf1/cip1,它被Ras所诱导,抑制Cdk2CyclinE和Cdk2CyclinA复合体的活性,从而阻断DNA的合成.
5.2.2 Rho/Rac通路
Rho家族蛋白质是 小G蛋白 的 Ras超家族 成员,其氨基酸序列大约有30%与Ras蛋白相同,三个主要的Rho蛋白是Cdc42,Rho,Rac.Cdc42刺激Rac,Rac接下来刺激Rho.然而,这个直线模型对于精确的信号转导通路来说过于简单,因为有证据显示交叉联系存在,例如Cdc42不通过Rac能影响Rho的活性.下游靶点Rho激酶α的激活,导致肌动蛋白的重新构建和P21激活的丝苏氨基酸激酶参与应力纤维的分解.最后Rac和Cdc42利用MAPK传递信号至核内,Rho通过刺激Src和fos启动子达到转录调节的作用.另外,Rac和Cdc42激活JunN端激酶,该酶结合Jun,EIk1和ATF2等转录因子,这就是Rho在细胞癌变过程中起重要作用的可能机制.另一个重要Rho下游靶点是P21Waf1/cip1.Rho抑制P21Waf1/cip1诱导,有利于Ras驱动细胞进入S期,P21Waf1/cip1阴性细胞不需要Rho进行Ras激活的DNA合成,降低了通过诱导P21Waf1/cip1在Ras转化过程中的重要性.
5.3 Ras2MAPK信号途径与肿瘤的关系
肿瘤发生 与调控 细胞增殖 的信号发生异常有关.一些肿瘤病人 生长因子 或其受体的表达或功能出现异常,如卵巢癌病人血清中EGF和 胰岛素样生长因子 含量升高;EGF增高影响细胞间连接,促进细胞转移和浸润.临床资料表明, 酪氨酸蛋白激酶受体 过表达与肿瘤相关,ErbB22在乳癌病人中30%过表达;起源于上皮的肺癌,乳癌等EGFR过表达,并与高转移率,低生存率以及差的预后相关,通过降低EGFR表达可抑制EGFR过表达的卵巢癌细胞的增殖.肿瘤细胞ras基因突变率大约为25%,而胰腺癌和结肠癌分别达到85%和40%. ras癌基因 主要以点突变和基因扩增方式存在,突变位点在第11,12,13,18,59,61密码子,是Ras蛋白和GAP的作用位点,由于突变,抑制了Ras内在的GTP酶活性,突变的Ras锁定在持续激活的Ras2GTP状态,引起细胞的恶性转化.raf癌基因与人类肿瘤关系密切,很少突变,但Raf持续活化,可导致细胞恶性转化;在 小细胞肺癌 病人的组织标本中,Raf在mRNA和蛋白水平均过表达,活性增高.在肿瘤治疗的研究中,可从以下几方面阻断Ras2MAPK 信号转导途径 :① 酪氨酸蛋白激酶抑制剂 ,如Radici2col抑制V2Ha2ras转化的NIH3T3细胞的MAPK活性,使细胞表型逆转;新研究的酪氨酸蛋白激酶抑制剂能双重作用ErbB22和EGFR,广泛抑制ErbB22或(和)EGFR过表达的肿瘤生长.②抑制Ras法尼基化: 法尼基转移酶抑制剂 (FTIs)是分子水平抗癌药,抑制ras翻译后修饰,已有多种FTIs用于动物模型和临床前期实验,有明显的抗肿瘤作用,如SCH66336对表达高水平H2Ras2GTP和ras是否突变的肿瘤都有生长抑制作用,已进入临床试验.③反义核苷酸技术:C2H2ras 反义RNA 质粒降低人胃癌BGC2823细胞的H2ras表达并抑制细胞生长和部分恶性表型逆转;Raf21反义DNA抑制人 白血病 细胞的增殖.④其他:针对 受体酪氨酸激酶 与底物作用的SH2区或SH3区设计多肽,在体外实验抑制酶和底物结合.
[编辑](javascript:;)[ 语音](javascript:;)
6.1 诊断
ras癌基因 和P21在许多癌前病变中都有表达.Ochi等发现1例胰液中K2ras突变 阳性 而细胞学及影像学检查均阴性的病例,随诊18个月后才发现恶性细胞及影像学的变化.提示ras基因突变早于病理检出及临床表现的出现.提示可用检测ras癌基因或P21的方法对癌变倾向提供较早信息.Kimura等检测切除的胰腺标本中K2ras的突变率,在胰导管癌,胰黏液细胞癌和慢性胰腺炎中分别是81%,53%和7%,相应胰液中的突变率分别为72%,53%和0,所以检测胰液中突变的K2ras基因即可为 临床诊断 提供有力的帮助.Futakawa等检测52例胰腺癌病人胰液中突变的K2ras基因和 癌胚抗原 水平,结果显示这两项指标联合检测在胰腺癌诊断中的准确度是90%,因此可用联合检测的方法及早而准确地诊断肿瘤.
6.2 病情评估及预后判断
Shirakawa等通过检测P21,P53,Ki67和 细胞角蛋白 10发现食管鳞癌的分化程度取决于发育不良的程度,而P21在这个演化过程中起关键作用.Rak等发现突变的ras基因可强效刺激 血管内皮细胞生长因子 的表达.Thebo等对有K2ras12或13密码子突变的DukesB2期 结直肠癌 进行分析显示,80%的原发灶和局域 淋巴结 发生相同位点的ras基因突变,说明ras基因突变对肿瘤 淋巴结转移 是高风险因素.有文献报道,唾液腺癌中H2ras基因突变率与临床病理指标呈高度正相关,可通过检测基因突变来推测肿瘤所处的阶段和分化程度.可见检测突变的ras基因可为临床病情的评估提供有力的依据.
Harada等研究表明,P21(-)者5年生存率为64.1%,(+)者为38.0%,⑹者为11.5%,P21是决定生存率的重要而独立的指标.但许多文献报道ras基因突变和临床病理指标及预后没有明显的关系.联合检测 非小细胞肺癌 组织中K2ras,p53和cerbB2基因的异常表达,比单项检测可明显地提高对预后的评估,因此,可用联合检测对某种肿瘤较敏感的几个癌基因的方法来对预后进行评估.
6.3 治疗
研究表明,体外给予结肠癌细胞(HCT116/P21+/+)P21 反义寡脱氧核苷酸 ,可提高癌细胞对放疗的敏感性;用末端含CAAX碱基的制剂作用于人类 ras癌基因 转染的 动物细胞 ,可抑制癌细胞的生长;用核糖酶(K2rasR2)拮抗突变的K2ras12细胞系,可使细胞生长停止,凋亡增加,VEGF 基因表达 受抑.可见用分子生物学的方法治疗肿瘤是有广阔应用前景的.
总之,虽然对ras基因,Ras蛋白及Ras信号转导通路的研究已达一定的深度,ras基因已在临床有一些应用,但仍有许多问题需解决,如ras基因突变发生在肿瘤形成的那些阶段,Ras信号转导通路与其他信号转导通路相互影响,相互交叉,阻断单一信号转导通路能否真正起到改变或影响 肿瘤发生 发展的作用等.随着对这些问题的研究,解决,人们将对肿瘤的预防,诊断和治疗提供更新更有效的方法.
Ras癌基因参与人类肿瘤的发生发展,最初是在急性转化性逆转录病毒实验中从Harvey、Kirsten两株大鼠肉瘤病毒中克隆出来的转化基因,自1982年Weinberg等人发现人的膀胱癌细胞中有活化的H-ras基因后,引起了人们对 ras癌基因 在人类肿瘤发生发展过程中所起的作用的极大关注。
ras基因家族与人类肿瘤相关的基因有三种——H-ras、K-ras和N-ras,分别定位在11、12和1号染色体上。其中,K-Ras则对人类癌症影响最大,它好像 分子开关 :当正常时能控制调控细胞生长的路径;发生异常时,则导致细胞持续生长,并阻止细胞自我毁灭。
长春碱类抗肿瘤药物系由夹竹桃科植物长春花(Vinca rosea)中提取。本品为细胞周期特异性药物,可使肿瘤细胞的有丝分裂停止于中期,对M期有延缓或阴滞作用,将细胞杀灭于G1期。与长春新碱(VCR)相同,VLB抗肿瘤作用靶点是微管,与管蛋白二聚体结合,抑制微管蛋白的聚合,从而妨碍纺锤体微管的形成,使核分裂停止于中期,引起核崩溃、呈空泡状或固缩。VLB还作用于细胞膜,干扰细胞膜对氨基酸的转运,使蛋白蛋合成受到抑制;亦可通过抑制RNA聚合酶的活力而抑制RNA合成。动物实验证明,本品对多种肿瘤者有抑制作用,较高浓度可直接破坏染色体。 *警告*长春花是夹竹科的植物,折断其茎叶而流出的白色乳汁,有剧毒,千万不可误食! 含70种以上生物碱,主要有长春碱(vinblastine)、长春新碱(leurocristine)、阿马里新(ajmalicine)、lochneridine、lochnericine、carharosin等。
本文地址:http://www.dadaojiayuan.com/jiankang/134661.html.
声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:douchuanxin@foxmail.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!