登录
首页 >> 健康生活

科学家研发出智能手术刀,可识别癌变组织

佚名 2023-08-10 03:23:30

英国研究人员17日报告说,他们开发出一种“智能”手术刀,可在几秒钟内告诉医生他们切除的是正常组织还是癌变组织。

目前医生做手术无法肉眼判断肿瘤是否已全部切除。研究人员表示,以乳腺癌为例,约20%的患者需要进行二次手术。因此,医生常常要将病人组织样本送检,这一过程耗时而又未必能除净癌变组织。

英国帝国理工学院的佐尔坦陶卡奇等人在美国《科学?转化医学》杂志上报告说,许多手术都使用电刀,这种手术器械通过电流对组织快速加热灼烧,以在切割的同时减少出血。在这个过程中会产生烟雾。

陶卡奇等人认为,这些烟雾中含有重要的组织信息,于是他们在电刀的基础上成功研制出“智能”手术刀(iknife),它与一台冰箱大小的质谱仪相连,可对手术产生的烟雾采样进行实时的质谱分析。在对81名病人的测试中,这种“智能”手术刀诊断的准确率为100%。而与传统的术后诊断需要半小时相比,这种“智能”手术刀的诊断时间只需短短3秒。

陶卡奇说,这种“智能”手术刀可应用于多种癌症手术,它几乎能提供实时信息,提高医生手术准确率,大大减少肿瘤复发。

上帝的手术刀中基因的秘密有哪些科学家做出了贡献

“上帝的手术刀”对海洋生物做了啥?
今年的诺贝尔化学奖颁发给了两位女科学家——埃马纽埃尔·卡彭蒂耶(Emmanuelle Charpentier)和詹妮弗·杜德纳(Jennifer A. Doudna),以表彰她们开发了被誉为“上帝的手术刀”“基因魔剪”的CRISPR/Cas9基因编辑技术。

今年的诺贝尔化学奖得主
CRISPR即成簇的规律性间隔排列的短回文重复序列(clustered regularly interspaced short palindromic repeat )。Cas是CRISPR关联基因(CRISPR associated gene)的缩写。
CRISPR最初由日本科学家在大肠杆菌中发现,后来被证明广泛存在于约45%的细菌和约90%的古细菌中,是其抵御噬菌体入侵的重要武器。
当噬菌体第一次侵染细菌时,细菌的Cas1和Cas2蛋白会将噬菌体的一小段DNA片段整合到自己的重复序列区中,成为一个新的间隔序列。待同一种噬菌体再次来袭时,病毒DNA被间隔序列转录的guide RNA识别,并激活Cas核酸酶,切断噬菌体的DNA双链,从而守护自身安全。利用此原理,科学家们可以实现对研究对象某一特定序列的靶向敲除、敲入等。

CRISPR/Cas9
CRISPR/Cas9系统可分为三类,其中CRISPR/Cas9结构和操作更简洁,由guide RNA引导Cas9核酸内切酶进行靶向基因编辑,自2013年首次运用到真核生物基因编辑以来,发展迅速,曾于2013年、2015年两次被Science杂志评为当年十大科学突破,且今年终于不负众望,摘得诺奖桂冠。
目前关于CRISPR基因编辑技术的报道多集中于人类医学(处于实验室研究阶段)和线虫、拟南芥、果蝇、斑马鱼、小鼠等模式生物。那么,这把“上帝的手术刀”在海洋生物中的应用取得了哪些进展呢?

构建海洋模式生物与疾病模型
将CRISPR基因编辑技术运用于海洋生物的最早报道可追溯至2014年。这一年,Sasaki、Stolfi等人均以海洋模式生物——玻璃海鞘(Ciona intestinalis)为研究对象,利用CRISPR技术先后实现了Hox基因定位和ebf基因定点突变。

Hox基因是一种动物基因组内高度保守的发育调控基因,在动物体轴形成过程中起重要的作用。ebf基因可在胚胎发育过程中决定细胞命运。这两种基因突变的玻璃海鞘模型可用于探究脊索动物身体形成的分子机制。
2016年,Nymark等将CRISPR技术运用到了海洋藻类中, 成功敲除了三角褐指藻(Phaeodactylum tricornutum)的CpSRP54基因。
CRISPR技术为海洋生物模型构建提供了新的视角,加快了科学家们探秘海洋生物起源与进化的步伐。

培育海洋经济新品种
海产鱼虾贝蟹是我们饮食中重要的蛋白质来源,而良种的培育能促进海水养殖业快速发展。利用基因编辑技术在新品种培育中具有诸多优势,如育种周期短、靶向性强、比转基因技术安全性高等,有着广阔的应用前景。
2019年,Kim等将肌生成抑制素(PoMSTN)基因相关基因编辑组件通过显微注射导入牙鲆(Paralichthys olivaceus)胚胎中,经过筛选,得到了杂合双等位基因突变体,表现为身体增厚,肉质更加肥满。

与野生型(左)相比,PoMSTN基因杂合突变的牙鲆(右)的肥满度增加(图片来自Kim等,2019)

今年,来自河北大学的研究者们利用CRISPR/Cas9技术敲除了脊尾白虾(Exopalaemon carinicauda)的类胡萝卜素异构加氧酶(EcNinaB-X1)基因,发现突变体在受到副溶血性弧菌或嗜水弧菌的攻击时存活率明显高于野生型;又敲除了另一个类胡萝卜素加氧酶基因EcBCO2,突变体具有更高的抗病性。这些研究发现为培育抗病抗逆对虾新品种提供了新思路。

解析海洋生物基因功能
解密基因的功能是解读生命这部“天书”的先决条件,基因编辑技术为科学家们提供了一个解密的绝妙手段。2014 年,Nakanishi等人将CRISPR 技术首次运用于甲壳动物,失活了大型溞(Daphnia magna)的pax6 基因,证明了该基因在眼发育中的关键作用。2019年,Liu等人成功敲除海胆的聚酮化合物合酶1基因(Psk1),突变个体从表现为白化。

野生型(左)与Pks1基因敲除的白化海胆(右)(从3个月至成年)

需要承认,基因编辑技术在海洋生物的应用仍处于初级阶段,受到海洋生物材料本身问题(如显微注射后的受精卵孵化率有待提高、海洋生物细胞系数目较少等)、CRISPR系统脱靶问题等方面的制约。但毫无疑问,海洋生物基因编辑领域的前途是光明的,我们有理由相信科研工作者们会不断创新,成功解决上述问题,取得海洋生物基因编辑领域的一个又一个成就!

参考文献
Doudna J A, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213): 1258096.
Kim J, Cho J Y, Kim J W, et al. CRISPR/Cas9-mediated myostatin disruption enhances muscle mass in the olive flounder Paralichthys olivaceus[J]. Aquaculture, 2019, 512: 734336.
Liu D, Awazu A, Sakuma T, et al. Establishment of knockout adult sea urchins by using a CRISPR‐Cas9 system[J]. Development, Growth & Differentiation, 2019, 61(6): 378-388.

利用组织培养技术发展起来的无土栽培技术有什么用处吗?

首先,它能够优化植物的品质。我们知道,马铃薯是用块茎进行繁殖的,但是在用块茎繁殖的过程中,植株内会侵染一些病毒,这些病毒能使马铃薯块茎的个头逐渐减小,从而使得马铃薯的产量和品质大大下降。科学家们用无土栽培的方法对马铃薯进行了脱毒,脱毒后的种苗所结出的马铃薯个头要比没有脱毒的个头大得多,这样不但大大提高了马铃薯的产量,还大大提高了马铃薯的品质。当然,容易被病毒侵染的绝不止马铃薯一种植物,目前,植株脱毒方法已经在草莓、葡萄、康乃馨等多种作物和花卉上获得了成功,并产生了明显的经济效益。

其次,用组织培养技术繁殖作物的最大的一个优点就是快速。因为这种技术使用植物的任何一个器官都可以繁殖,而不用等待植物经过漫长的生长期,开花结果后才能繁殖。因此,只要有少量的植物植株,每年就能以数以千万计的速度进行繁殖,用于推广优良品种可以大大节省时间,尤其是对于一些繁殖系数比较低和不能用种子进行繁殖的名特优作物品种的繁殖,意义更显重大。早在60年代,我们的科学家就用无土栽培的方法快速繁殖兰花获得成功。随后,科学家们还快速繁殖了一批重要的、经济价值比较高的名特优作物的新品种,如甘蔗、花卉、菠萝、草莓、柑橘、苎麻等。从理论上讲,一棵植物植株就可以通过组织培养技术培育成为数以千万计的试管苗,每一个试管苗又可以培育出无数的小苗。依据此原理,一种现代技术和农业产业相结合的新型工业——试管苗工业就出现了。

第三,组织培养技术的另外一个突出贡献就是用它可以保存种质。自从工业革命以来,由于人类活动的范围扩大和活动加剧,植物物种的灭绝呈现加速的态势,世界上种质资源日益枯竭,特别是那些不能生产种子进行繁殖的植物或者种子寿命短的植物尤为严重。近年来,科学家研究出用组织培养的方法低温保存种质。例如,我们把烟草、胡萝卜等植物的细胞,在零下二十摄氏度至零下一百九十六摄氏度的低温下可以贮藏数月,而且细胞在合适的条件下仍能够恢复生长,再分化生成完整的植株。这种保存法所需要的容积小,几乎每一个细胞就相当于一粒种子。于是,人们就开始用组织培养的方法来保存和大量繁殖濒临灭绝的那些珍稀植物物种。

利用组织培养技术繁殖种苗还有一个很大的优点,那就是运输非常方便。利用组织培养所形成的种苗是放在试管里的,而一瓶试管苗可以随身带到任何人类能够到达的地方。你可不要小看这一瓶试管苗,它很有可能繁殖成为数以亿计的新的植株,长成一片茂密的森林呢!如果宇航员带着一些这样的试管苗,不但在路上可以利用植物制造氧气和食物,还能把一些合适的星球改造成我们需要的花园或农场呢!

植物组织培养育苗技术的进步,使得人类在繁殖植物时,在很大程度上不用依赖于植物自身的繁殖特性和繁殖周期了,但科学家们并不满足。随着遗传学向细胞和分子水平研究上的巨大进步,科学家们又在研究,人类能不能用改变植物遗传密码的方法来改良现有的植物品种、甚至创造全新的植物品种呢?经过几十年艰苦的研究,科学家们终于获得了初步的成功。我们知道,工程师们可以设计建造高楼大厦、海底隧道,可以设计制造汽车、飞机、火箭等,这些都是宏观的伟大工程。但是,决定植物遗传性状的基因是DNA上的一个个片断,是非常小的,一般情况下是看不见和摸不到的,即使借助普通的光学显微镜也还是拿它没有办法,人们怎样才能做到对它们进行随意切割、缝合等改造呢?如果使用一般的工具,我们确实是没办法,但幸好,科学家们发现了大自然给我们预备的工具——能够切割和连接DNA片断的特殊的酶。

科学家在进行基因重组时用到的酶有两类:一类是存在于细菌细胞内的限制性内切酶,用于对DNA进行切割,是“手术刀”;另一类是用于连接DNA片断的DNA连接酶,是“针线”。

限制性内切酶有一个很大的特点,就是每一种酶只能识别DNA序列中的几个到十几个特定的碱基对。现在,已经发现的限制性内切酶已经超过了350种,这样,利用不同的限制酶就可以对不同的DNA片断进行比较准确的切割了,在切割完之后,利用DNA连接酶就可以将限制性内切酶所切割的DNA片断再相互连接起来。有了“手术刀”和“针线”,分子生物学家们就可以随心所欲地将不同来源的DNA进行切割和再连接,一个个具有全新的遗传性状的物种就在人类的手中诞生了。

现在,我们已经可以将抗某种除草剂的基因转移到玉米中,使这种玉米能够抵抗某种高效的除草剂,而不会像普通玉米一样受到损害;美国孟山都公司的科学家们已经将烟草花叶病毒的某个基因转到了烟草中,从而获得了能抗这种病毒的烟草新品种,他们还用相同的方法获得了抗马铃薯X病毒和Y病毒的马铃薯新品种;国外已经把一种细菌的毒素蛋白基因转移到了烟草、番茄和棉花中,获得了抗鳞翅目昆虫的新品种,使得一些昆虫在吃了这些植物的叶子或者果实后就会中毒死亡……

这种用人工的方法把不同生物的决定某些性状的基因提取出来,在体外进行切割、重新搭配和再连接,然后再将连接好的基因转移到生物体内,让生物获得新的遗传特性组合,从而创造出新的生物类型的巨大工程叫做基因工程,所获得的新植物物种叫做转基因植物。

现在,基因工程中最引人注目的一个课题,就是如何将固氮菌中的固氮基因转移到有实用价值的菌种里,以便能利用细菌进行氮肥的工业生产,或将这些菌种释放到土壤中,使它们可以直接为农作物提供氮肥。在我国,科学家已经应用基因工程的方法培育出了高效固氮工程菌,给大豆接种以后,能够比普通的根瘤菌每公顷增产225千克左右,而且接种这种高效固氮工程菌的大豆在黑龙江已推广上万公顷。

我们知道,绿色植物可以利用光能,在叶绿体中进行光合作用,制造养料、营养自身。如果我们将植物体内控制光合作用的基因转移到猪、牛、羊等家畜中,培育出自己能进行光合作用的“叶绿体猪”、“叶绿体牛”、“叶绿体羊”等,那么,这些家畜就可以自己制造营养物质,人们也就不必再为缺乏饲料而发愁了!

随着研究的不断深入,基因工程必将在工农业生产、医疗卫生、环境保护等方面发挥更加巨大的作用。但是,基因工程也遇到了许多困难,特别是基因工程产品的安全问题,已经引起了世界上各国环保部门的重视,由于人工合成的转基因植物并不是自然界原来固有的,基因工程在制造新物种的同时,也破坏了现有生物的遗传特性,它们对人或其他动物食用后的毒害作用、它们对自然界其他植物的影响还需要经过长期的检验才能被我们确切了解。为此,许多国家已经制定了针对基因工程的专门法规,规定中强调,凡是与哺乳动物和人有关的基因工程实验,都必须在严格的有防护的实验室中进行,所制造的任何基因工程产品或基因工程菌都必须经过严格的毒性实验,通过严格的审批以后,才能到实验室外进行实验和生产等等。

在神话传说中,大地上的一切生物都是上帝创造的。上帝虽然创造了地球上的生物,但是他可以不负责任,因为他并不生活在这个地球上,地球上的灾难对他并没有切身的影响。现在,我们人类的科技发展已经到了能够左右和创造一些物种的程度,我们能够成为植物的“上帝”吗?恐怕不行。因为我们还不能像“上帝”一样到地球之外去生活,而且基因工程是一个非常复杂的过程,到目前为止,人们还不能完全控制这个过程。

本文地址:http://www.dadaojiayuan.com/jiankang/134688.html.

声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:douchuanxin@foxmail.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

上一篇:

下一篇:

相关文章