2016年10月03日讯 合肥工业大学一项研究发现,通过光热试剂在近红外光照射下产生的光热效应,能触发化疗药物从黏流态高分子纳米药物载体中超敏释放,显着增强对肿瘤生长的抑制效果。成果发表在《先进功能材料》期刊。
最新研究发现,高分子纳米药物富集在肿瘤部位并被肿瘤细胞摄取后,需要从纳米载体中快速释放才能达到更有效的肿瘤杀伤效果,而目前临床使用的聚乳酸体系高分子纳米药物无法实现这一需求。
该校纳米医学和生物材料团队通过包载光热试剂和化疗药物阿霉素得到共负载纳米体系,其内核高分子材料玻璃化转变温度低至-81.8°C。在近红外光照射5秒后,纳米颗粒溶液温度微弱上升0.5°C--1.5°C,并触发化疗药物的快超敏释放。实验表明,在肿瘤部位化疗药物富集基本相当的情况下,近红外光触发的化疗药物超敏释放,能显着增强抑制肿瘤生长能力。32天治疗结束后,聚磷酸酯纳米载体实验组小鼠肿瘤体积仅为聚乳酸纳米实验组的1/3。
而在目前临床上使用的第一代聚乳酸高分子纳米药物中,由于聚乳酸的玻璃化转变温度高达40.2°C,在光热转化时聚乳酸链段仍处于玻璃态,整个高分子链不能运动,从而导致化疗药物运动被阻止,这种超敏释放效应并未观察到。
光热效应简介
光热效应指材料受光照射后,光子能量与晶格相互作用,振动加剧,温度升高,由于温度的变化而造成物质的电学特性变化。利用光热效应的探测器:热敏电阻、热电偶、热电堆和热释电探测器等,红色的光的热效应最大。
肿瘤简介
肿瘤组织无论在细胞形态和组织结构上,都与其发源的正常组织有不同程度的差异,这种差异称为异型性。异型性是肿瘤异常分化在形态上的表现。异型性小,说明分化程度高,异型性大,说明分化程度低。区别这种异型性的大小是诊断肿瘤,确定其良、恶性的主要组织学依据。良性肿瘤细胞的异型性不明显,一般与其来源组织相似。恶性肿瘤常具有明显的异型性。
光疗法即利用光线的辐射能治疗疾病的理疗法。光疗主要有紫外线疗法、可见光疗法、红外线疗法和雷射疗法。
基本介绍 中文名 :光疗 释义 :用光线的辐射治疗疾病 方法 :理疗法 种类 :紫外线,可见光,红外线,雷射 发展,分类,红外线疗法,光动力疗法,可见光疗法,紫外线疗法,雷射疗法,雷射防护,联合套用, 发展 光疗就是套用日光、人造光源中的可见光线和不可见光线防治疾病的方法。光疗始于日光疗法,早在公元2世纪就有了日光疗法的记载。人工光源始于18世界末,至19世纪中,可见光、红外线、紫外线等相继形成,随后于临床治疗的各领域中得到广泛的套用和不断发展。 分类
光疗主要有紫外线疗法、可见光疗法、红外线疗法和雷射疗法。
红外线作用于人体主要改善局部血液循环、促进肿胀消退、镇痛、降低肌张力、缓解肌痉挛及干燥渗出性病变。
紫外线作用于人体,光能量引起一系列化学反应,有消炎、止痛、抗佝偻病的作用,常用以治疗皮肤化脓性炎症和其他皮炎、疼痛症候群、佝偻病或软骨病等;波长310-313nm范围的紫外线称之谓窄谱中波紫外线(NBUVB),集中了紫外线中生物活性最强的部分直接作用皮肤患处,同时过滤掉对皮肤有害的不良波段紫外线,副作用小,作用于皮肤角质层,起效时间短,见效快。已在各大医院广泛用于银屑病、白癜风、慢性湿疹、神经性皮炎、特应性皮炎、掌跖脓疱病、玫瑰糠疹、斑秃、副银屑病、皮肤慢性溃疡、蕈样肉芽肿等疾病的治疗。
可见光就是人眼能看到的光线。用可见光治疗疾病的方法为可见光疗法。主要包括红光、蓝光、蓝紫光及多光谱疗法。红光具有兴奋作用;黄光、绿光与红光作用相反;蓝紫光可用于治疗核黄疸。
雷射为受激辐射光放大产生的光,具有发散角小、方向性好、光谱纯、单色性好,能量密度高、亮度大,相干性好等特点,具有热效应、机械效应、电磁效应。可用于许多疾病的诊治。 红外线疗法
红外线的波长为760 nm~50?m,属不可见光。红外线的主要作用基础为热效应。根据生物学特点,红外线可分为两段,其一是长波红外线,波长1.5~15?m,又称远红外线。其二是短波红外线,波长760 nm~1.5?m,又称近红外线。红外线的光量子能量低,主要生物学作用为热效应而无光化学作用。人体皮肤和皮下组织是吸收红外线的主要区域,由于皮肤表皮各区对不同波长的红外线吸收率是不同的,长波红外线只能达到0.05~1mm深度,短波红外线可深达 1~10mm,皮肤经红外线照射后出现充血,表现为境界不清颜色不均匀的红色的热红斑。停止照射后,约1~2小时红斑完全消退。反复多次照射后皮肤上可出现不均匀色素沉着。其特点为沿皮肤血管的网状花斑,形状如大理石纹。
皮肤及表皮下组织将吸收红外线能量转变成热,热可以引起血管扩张,血流加速,局部血循环改善,组织的营养代谢增强,血液淋巴循环的加速,促进了组织中异常产物的吸收和消除。红外线的温热作用降低了感觉神经的兴奋性,干扰了痛阈,故红外线疗法对各种原因引起的疼痛(如神经痛)均有一定的镇痛作用。热可使肌梭中γ传出神经纤维的兴奋性降低,牵张反射减弱,致使肌张力下降,肌肉松弛,如在胃肠平滑肌痉挛时,可使胃肠蠕动减弱,肌肉痉挛缓解,疼痛消除;又能使组织内血循环加快,渗出增加,小动脉和毛细血管周围出现白细胞移行浸润,吞噬细胞功能增强,抗体形成增多。由于免疫力增强,故对浅层组织的慢性炎症有吸收作用。
红外线治疗的适应征广泛,主要用于缓解肌痉挛,改善血运,止痛。例如腰肌劳损、腰椎间盘突出、肌腱炎、慢性胃炎、慢性肝炎、神经炎、皮肤溃疡、挛缩的瘢痕等。禁忌症为高热患者、出血倾向者、活动性肺结核及重症动脉硬化等。
红外线辐射器主要为红外线灯、石英红外线(钨丝伸入充气的石英管中构成)、光浴箱。 光动力疗法 即以长波紫外线与某些光敏性药物结合治疗皮肤病,或称黑光疗法或光化学疗法。可口服光敏性药物如8-甲氧基补骨脂素、三甲基补骨脂素(TMP),药物分子在长波紫外线照射下吸收其能量而被激活,并与细胞内DNA链上的两个胸腺嘧啶发生共价结合,形成胸腺嘧啶二聚体,通过光加成效应,光敏剂与胸腺嘧啶碱形成C4-环丁型光加成物,致细胞损伤、受抑或死亡。 可见光疗法
可见光能引起视网膜的光感,其波长为760~400nm,由红、橙、黄、绿、青、蓝、紫等七色光线组成。可见光的疗法包括红光、蓝光、蓝紫光及多光谱疗法。可见光的治疗作用主要是热作用和光化学热效应。可见光能引起视觉。人和动物的昼夜节律以及一系列的生理功能节律与自然界的照明节律(日夜交替)有密切的联系。红色、橙色、黄色光能使呼吸加快加深,使脉率增加;绿色、蓝色、紫色光可引起呼吸减慢变浅及脉率减慢;蓝光和紫光则降低神经的兴奋性,有镇静作用;红光提高神经的兴奋性,有 *** 作用。同时可见光还有加强糖代谢、促进氧化过程、加强垂体功能、提高脑皮层功能、加强交感神经系统的兴奋性、增强机体免疫力等作用。1970年代以来,可见光用治疗新生儿核黄疸。胆红素对波长400~500nm左右的光线吸收最强,最大吸收波段为420~460nm ,属蓝紫光段。胆红素吸收蓝紫光后,经分解成为一系列的转化物,逐渐变成淡黄色的低分子水溶性化合物,迅速从尿液排出。光照时皮肤血流可增加224%,这有利于将体内深部的胆红素带到皮肤浅层组织处接受照射。经蓝光照射后患儿黄疸消退,血清胆红素下降,排出绿色和深棕色的稀粪。
可见光疗法的适应征和禁忌征基本同红外线疗法。需要作用较深、范围较大切较均匀的热效应是主选可见光。
临床套用的可见光光源主要是钨丝白炽灯,光谱约为4.8%为可见光,95%%为红外线。若做单色光照射,可在灯头下加一滤光板。 紫外线疗法
紫外线是光谱中位于紫光之外、波长小于紫光的不可见光线,其波长为400~180nm。光量子能量高,有明显的光化学效应。
医用紫外线分为三段:①长波紫外线(400~320nm);②中波紫外线(320~250nm);③短波紫外线(250~180nm)。太阳光中含有大量的紫外线,但大气层几乎将短波紫外线吸收殆尽,故辐射到地面的只有长、中波紫外线。短波紫外线可靠人工光源获得。 紫外线的生物学作用
①红斑反应:即以一定剂量的紫外线照射皮肤后,经过一定时间,照射皮肤上呈现的边界清楚、均匀的充血反应。皮肤对紫外线的吸收与其波长有关。紫外线波长越短,透入皮肤深度越浅,因此,短波紫外线和中长波紫外线大部分被皮肤角质层和棘细胞层吸收。紫外线照射后必须经过一定时间才能出现红斑反应,这段时间即为潜伏期。潜伏期的长短与紫外线的波长有关。长波紫外线红斑的潜伏期较长,一般为4~6小时,短波紫外线红斑的潜伏期较短,一般为1、5~2小时,红斑反应于12~24小时达到高峰,之后逐渐减退。紫外线红斑的本质是一种光化性皮炎,属于非特异性炎症。紫外线产生红斑的机理有4种学说:一是组胺说。紫外线对组织蛋白质的变性分解作用,使组织内的组氨酸分解,形成组胺,组胺的释放,引起真皮 *** 层毛细血管扩张、渗透性增强,表现为皮肤充血,出现红斑反应。但红斑的形成非单纯的组胺作用;紫外线作用于棘细胞的溶酶体膜,释放出水解酶等多种酶,使蛋白分解,血管扩张形成红斑;前列腺素是引起紫外线红斑重要活性物质,而激肽、组织胺是辅助因素;紫外线使血管内皮细胞变性,导致激肽产生,出现红斑。
红斑处血管扩张,血压降低,白细胞增多,吞噬能力增强,明显提高免疫能力。因而紫外线照射具有消炎、止痛、镇痛及抗感染的作用;又能加速组织再生,可用于伤口不愈的慢性溃疡。对肌肉和神经的风湿性炎症或表浅的急、慢性化脓性炎症有良好的效果,但对结核性炎症可加剧病灶扩散,因而不宜采用。
一定剂量的紫外线照射后,经过一定的时间可出现不同程度的皮肤色素沉着。长波紫外线照射后黑色素沉着强,短波紫外线照射后色素沉着弱。黑色素可与紫外线照射下皮肤光化学过程产生的自由电子和其他化学自由基结合,防止它们对机体的损害。皮肤色素沉着的机理是:紫外线可作用于垂体-肾上腺皮质系统,加强黑色素细胞 *** 素的分泌,从而促使黑色素细胞(表皮与真皮间的分泌细胞)内的黑色素颗粒从还原状态变成氧化状态,加强表皮细胞对黑色素颗粒的吞噬作用,使皮肤色素沉着加强。利用紫外线的色素沉著作用,可以治疗白癜风,尤其是长波紫外线与光敏剂配合。
② 对钙磷代谢的影响。紫外线可以使人体皮肤中的7-脱氢胆固醇转变成维生素D3,维生素D3具有促进肠道对钙、磷的吸收及骨组织钙化作用。可以治疗小儿佝偻病和成人软骨病。另外,钙离子对降低血管的通透性和神经兴奋性的作用,可以减轻过敏反应,是紫外线脱敏的机制之一。
③ 调整和改善神经、内分泌、消化、循环、呼吸、血液、免疫等系统的功能。
④ 紫外线的杀菌作用: DNA主要存在于细胞核的染色体内,是细胞繁殖、发育、生长的核心。DNA对中、短波紫外线有强烈的吸收作用。故波长220~300nm的紫外线有杀菌作用。利用紫外线的杀菌作用,可以消毒清洁创面,治疗皮肤、黏膜、伤口、窦道、瘘管等的各种感染。
大剂量的紫外线可以引起RNA破坏、蛋白质分解和蛋白变性,与对DNA的破坏一致,是紫外线杀菌消毒、清洁创面的机制之一。利用光敏剂加强紫外线对DNA、RNA的抑制作用,可以治疗牛皮癣等增殖性皮肤疾病。
另外紫外线达到一定强度时,可以破坏组氨酸、蛋氨酸、酪氨酸等,这些胺基酸都是酶的活性中心,一旦被破坏导致酶功能丧失,从而影响细胞功能,这也是紫外线杀菌机制之一。
⑤机体对紫外线的敏感性常受多种因素(季节、年龄、肤色、身体状况、用药情况等)的影响。春季机体对紫外线敏感性较高,夏季最低。常在室外劳动的人、运动员、农民、学生、军人对紫外线敏感性低,在室内、坑道等处工作的人员敏感性高。青春期对紫外线敏感性高,幼儿及老人敏感性低。皮肤色素淡者敏感性高,肤色深者敏感性低。女性月经前敏感性高,经后敏感性低。妊娠期敏感性高而分娩后敏感性低。机体营养佳者敏感性高,差者敏感性低。肺结核、甲状腺功能亢进、湿疹、红斑狼疮、急性心肌炎、急性肾炎、恶性肿瘤、卟啉症、烟酸缺乏症等的患者对紫外线敏感性升高;而慢性病、甲状腺功能低下、神经系统损伤患者敏感性低下。服用不同药物后对紫外线敏感性亦不同。如维生素B1、磺胺药物、氯丙嗪、异丙嗪、灰黄霉素、四环素、双氢氯噻嗪等可增加对紫外线的敏感性。身体各部位对紫外线的敏感性也不同,躯干、胸腹敏感性高、颜面、颈部、手足背部敏感性较低。 紫外线的病理作用 有致癌(皮肤癌)和光过敏作用(体内的光过敏剂与光线共同作用,损伤机体组织)。因此紫外线工作者应保护眼和皮肤,采用光防护剂(如苯酚类物质)或戴手套和防护眼镜。 紫外线的临床套用 分预防套用及治疗套用。在感冒、流感、百日咳、猩红热、白喉、风湿热等流行期,病人照射紫外线可使症状减轻,健康人尤其是小儿照射有预防作用。紫外线照射又有预防佝偻病的作用。多用氩气水银石英灯管进行紫外线治疗。 治疗套用的适应症为 ①内科疾病,如呼吸系统疾病,包括慢性支气管炎、肺炎、支气管哮喘和肺结核病等。对肺结核患者剂量要小,逐步增加,体温超过37.5℃或咯血时即停止照射。 ②外科疾病,如创伤、烧伤、皮下化脓性炎症、手术后感染、淋巴结炎、乳腺炎、丹毒等。 ③神经精神系统疾病,如周围神经炎、多发性神经炎、神经痛、神经症等均可采用亚红斑量或红斑量治疗。 ④皮肤科疾症,如皮肤化脓症、银屑病、玫瑰糠疹、斑秃、湿疹、白癜风等。另带状疱疹经紫外线照射后, 组织中酶的活性升高, 物质代谢增强, 炎性渗出吸收, 疱疹消退, 具有镇痛及预防继发感染的作用。 ⑤妇科疾病,如附属档案炎、宫颈炎、 *** 炎等。 ⑥儿科疾病,支气管炎、肺炎、佝偻病等。 ⑦五官科疾病,如咽炎、扁桃体炎、外耳道炎等。 禁忌证为 重症心肾疾病者、活动性结核病、光敏性疾病、中毒伴发热、急性肿瘤的局部。
紫外线照射剂量常用生物剂量测定法计量(紫外线照射皮肤产生最小红斑所需时间为一个生物剂量)。紫外线照射可分全身照射和局部照射,局部照射剂量常用亚红斑量(无肉眼可见红斑反应)、红斑量(有肉眼可见红斑反应)等计算。 雷射疗法
雷射为受激辐射光,具有发散角小、方向性好、光谱纯、单色性好,能量密度高、亮度大,相干性好等特点,具有热效应、机械效应、电磁效应。可用于许多疾病的诊治。 雷射的生物学效应
热作用:主要是可见光区和红外光区的雷射所引起的。热作用引起组织升温随雷射能量的上升而上升。在临床治疗中利用雷射热效应时,需要根据具体情况选择适当的雷射能量。
压强作用:雷射的能量密度极高,产生的压力很大。利用雷射压强治病如纹身的去除、泌尿系统结石也可用雷射的压力将之击碎而排出。
光化作用:生物大分子吸收雷射光子的能量而被激活,产生受激原子、分子和自由基,引起机体内一系列的化学改变,叫做光化反应。光化反应可导致酶、胺基酸、蛋白质、核酸等活性降低或失活。
电磁作用:雷射是电磁波,其电场强度很高,可用于治疗肿瘤。
生物 *** 作用:低强度的雷射照射可以影响机体免疫功能,起双向调节作用,可以增强白细胞的吞噬作用。适当剂量可以抑制细菌生长,促进红细胞合成,加强肠绒毛运动,促进毛发生长,加速伤口和溃疡的愈合,促进骨折的骨痂生长,加速愈合,对神经组织损伤能加速修复作用,增强肾上腺功能,增强蛋白质的活性等。 雷射在临床治疗中的作用
高强度的雷射
高强度的雷射是指雷射作用于生物组织后造成不可逆的损伤,其输出功率在瓦极以上。在临床中主要是用强雷射使受照组织凝固、止血、融合和气化,或者将病变组织切除掉。
广泛套用于外科手术,如食管疾患、胃肠吻合术、需手术的肝胆疾患、烧伤的切痂治疗、尿道狭窄、前列腺癌、甲状腺手术、 *** 手术、颅内肿瘤手术、各种 *** 手术等,以及各种皮肤科疾患如疣及疣状痦、血管病变、皮肤恶性肿瘤等。
低强度的雷射
低强度的雷射能够调节机体免疫功能、加速溃疡和伤口愈合、加速骨折愈合、有明显的消炎止痛作用,且能促进胆汁的分泌、脾的造血功能以及调节内分泌系统。
套用于带状疱疹、酒渣鼻、多形红斑、荨麻疹等皮肤疾病,颈椎病、腰间盘突出、肩关节周围炎、肌纤维织炎、急慢性损伤、急性乳腺炎、乳腺囊性增生、支气管哮喘、关节炎、宫颈糜烂、慢性盆腔炎、面神经麻痹、血管性头痛、神经痛、外耳道湿疹、过敏性鼻炎、咽炎等。 雷射防护
输出功率在500mV以上的高功率雷射器对人体损伤程度较大,其可见光和近红外区的漫反射光也是危险的。
眼的防护
眼的防护主要使用防护镜(反射式、吸收式、变色式、警告式)
皮肤的防护
对超过阈值的雷射,穿上白色工作服、戴手套,不能让雷射直射皮肤,防止反射、散射光照射皮肤
雷射工作者要定期做健康检查。 联合套用
小剂量紫外线照射后,DNA 和 RNA 的合成先被抑制而后合成加速,可以促进肉芽、上皮组织的生长和伤口的愈合。用于治疗各期压疮均有较好疗效。此外,紫外线照射还能扩张血管,加速血流,改善局部血液循环,加强局部营养,提高
机体免疫功能。大量的动物实验及临床实践已表明,低能量雷射照射,具有良好的抗炎和组织修复功能,可扩张血管,改善微循环,提高红细胞携氧量,增强机体免疫能力, *** 巨噬细胞的吞噬能力和肉芽组织的新生,从而促进创面愈合。 近几年,外学者研究发现半导体雷射抗炎抗感染作用优于其他低能量雷射,其作用机制主要通过降低血管壁的通透性,减轻炎症的渗出、充血、水肿,通过激活巨噬细胞系统的功能,提高人体全身及局部免疫力,起到抗炎、抗感染的作用,雷射照射促进了新生血管的形成及生长,并使细胞核心糖核酸及糖原的含量增加,成纤维细胞增生,肉芽组织生长,导致新生上皮组织再生,半导体雷射还能使细胞浆内 RNA 及细胞核中 DNA 含量平衡增加,促使蛋白质合成,从而 *** 创面愈合。紫外线联合半导体雷射治疗褥疮,抗菌消炎作用好,能加快伤口愈合的速度,且不易反复,对褥疮治疗确切有效,且操作简单、安全,值得临床推广,结合套用。但对于轻中度褥疮治愈率更高,治愈时间更快,提示临床护理应及时发现,尽早治疗。
1. 氩氦超导手术治疗系统(cryocareTM targeted cryoablation therapy,又称氩氦刀)
氩氦刀是一种适应证甚广的消融治疗技术,自1998年以来,美国已有100多家医院,中国有80余家单位装备了氩氦刀设备,它可对多种肿瘤施行精确冷冻切除,并且在肝癌、肺癌、胰腺癌、前列腺癌、肾肿瘤、乳腺癌等治疗领域取得了突破性的进展。手术中冷冻适用于几乎所有实质性肿瘤,与射频等其他消融方法不同,氩氦刀冷冻既能治疗小肿瘤,也能治疗体积较大的(直径大于5cm)、数目较多的肿瘤;由于血管内血流的释热作用,冷冻不易引起大血管损伤,以至于也可以治疗大血管附近的,不能手术切除的肿瘤。据2007年11月第14届世界冷冻治疗大会统计,中国使用美国CryocareTM氩氦刀冷冻治疗的肿瘤例数已达11000例,其中完成500例以上的单位有10余家,部分医院已经达4000例,病种30余种,中国是全世界治疗肝癌和肺癌最多的国家。
由于各种靶向消融技术的特点不同,对于具体病例的治疗技术选择可能会有所不同。国内张克勤博士[4]比较了氩氦刀冷冻消融和射频(RFA)、微波(MCT)热凝固治疗兔VX2肝癌的对比研究,三种微创治疗在消融兔VX2肝癌中,无论是在消融靶区面积和横径方面、消融靶区肿瘤完全消融率方面,还是在消融靶区肿瘤细胞残留率方面和消融靶区中肿瘤细胞完全坏死率方面,氩氦刀冷冻均优于RFA和MCT,而RFA和MCT效果相当。另外,RFA和MCT的“煮沸效应”造成的肿瘤种植播散是临床无法克服的问题,所有这些方面提示氩氦刀冷冻在治疗兔VX2肝癌中的临床疗效可能优于RFA和MCT。
临床治疗证实,氩氦刀局部消融与放疗、化疗、生物治疗、介入治疗等综合治疗相结合,疗效优于单一治疗,1~2年生存率显著提高,其远期疗效依赖于综合治疗措施的选择。当肿块≥4cm,特别是大于6cm时治疗效果差,瘤体易复发,甚至增大。因此,治疗前后联合其他治疗方法的综合治疗措施的应用尤为重要,例如对于肺癌的治疗:氩氦刀联合介入化疗,联合放疗,联合中医药治疗,与单纯放疗、化疗、介入栓塞比较,1年、2年存活率均有显著提高,取得了比较令人满意的临床疗效,以上结果表明氩氦刀将成为临床治疗肺癌必备的技术。对于靠近纵隔部位的肿瘤,局部氩氦刀完全消融有一定困难,氩氦刀治疗后也可以联合其他局部治疗方法,与放疗结合可以极大地减低放射剂量,联合药物植入和放射粒子植入可以提高疗效和减少植入粒子的剂量,与其他局部治疗和全身治疗技术有效的结合,可改变目前综合治疗的理念,提高远期治疗效果。目前国内氩氦刀的治疗方兴未艾,但缺乏前瞻性、多中心、随机对照的临床试验结果来观察其对治疗肺癌的长期疗效。
氩氦靶向治疗技术协作组开展了较多的工作,如编写了全球第一个规范化治疗书籍,包括动物和人体实体瘤病灶消融靶区大小,冷冻后的影像学改变。建议其他靶向消融技术可以效仿。
2.射频消融(radiofrequency ablation,RFA)和微波消融(microwave ablation,MWA)
MWA和RFA技术均起始于上世纪90年代初期,1996年LeVeen伞状多电极得到美国FDA认证,极大地扩大了RFA的应用范围,与其他热消融技术比较,RFA是迄今世界范围内使用较多的技术,可以检索到的综述文献超过500篇。MWA主要在日本和我国开展,而RFA的报道绝大多数来源于欧美国家,可以认为MWA和RFA技术的治疗效果基本上是相同的。射频电极从最初的单极发展到了多极,以及冷循环射频治疗系统,缺点是一次性毁损灶的范围有限,最大毁损体积直径3.5cm,对直径>3cm以上的癌肿易残留病灶。美国RITA公司已经开发出针对不同大小肿瘤的系列射频针,直径3cm以下的肿瘤可以选择第一代伞状多极针或单极针;直径3cm至5cm的肿瘤应选择二代锚状多极针;直径5cm至7cm以上的肿瘤应选择最新的第三代集束电极针,并使用了特殊注射泵,使热传导更快更均匀,治疗时间大幅缩短,治疗大肿瘤效果更确切,病人更轻松。
一些学者提出了在晚期非小细胞肺癌的治疗中,如何使射频治疗和化疗及局部放疗相结合以提高疗效的问题。对于晚期非小细胞性肺癌,尤其是周围性肺癌,先利用射频消融治疗,大面积灭活肿块内癌细胞,减少肿瘤负荷,再用化疗治疗残余的转移癌细胞。对有肺门、纵隔淋巴结或其他转移病灶的患者,可结合化疗进行放疗及其他治疗。这样,肿瘤在得到局部控制的基础上,进一步提高了患者生存质量及生存时间。随着RFA技术的不断完善,RFA同介入化疗,立体定向放射治疗,外照射等有机结合,将极大的提高肿瘤的局部控制率,改善生活质量,延长患者的生存期。
3. 间质内激光治疗(interstitial laser therapy,ILT)和光动力
激光消融治疗(ILT)是以光学或接近红外线波长的高能量光束在组织内散射而转变成热,时间通常长于RFA,可以超过1h。国内外生产的激光管消融范围较小,处于临床探索中,并未进入临床使用。试验研究复合探针,试图扩大消融范围。
4.高强度聚焦超声(high-intensity focused ultrasoundablation,HIFU)
HIFU国内首创,目前有生产厂家4-5个,对于探头的设计,频率各有不同。HIFU可用于治疗很多良性和恶性肿瘤的治疗,如子宫肌瘤,乳腺癌、骨和软组织肿瘤等。国内陆续有应用HIFU治疗晚期胰腺癌的临床研究报道,显示的疗效主要是止痛和辅助放、化疗后肿瘤体积的变化,这可能是超声热疗的效果,并非真正意义上的HIFU消融治疗。国内文献表明,HLFU对于原发性和转移性肝癌等多种实体肿瘤有灭活作用。但在HIFU治疗肝癌的应用上仍存在诸多限制,如虽然部分超声波可经肋间隙进入肝组织,但肋骨反射使超声波到达靶区的能量大大减少;治疗时间过长使HIFU治疗的麻醉环节风险增加;HIFU治疗导致的皮肤烧伤限制了其治疗剂量的增加;HIFU治疗在破坏肝癌组织的同时,增加了肝损害的机会。因此,如何提高超声波的生物学效应、减少HIFU的治疗时间,成为该治疗成败的关键之一。
5. 精确靶向外放射治疗技术
(1) x-刀、r-刀、3D-CRT、IMRT
放射治疗技术在20世纪末出现了质的飞跃,主要体现在立体定向放射外科(SRS)、立体定向放射治疗(SRT)、三维适形放射治疗(3D-CRT) 和调强放射治疗(IMRT) 技术的临床应用,使在近一个世纪中一直处于肿瘤治疗辅助地位的放疗手段在肿瘤治疗中的作用和地位发生了根本转变。我国在引进瑞典头部r-刀和欧美x-刀以及三维适形放射治疗技术的临床应用过程中,开创了中国模式的头、体r(x)-刀的新局面。这一技术的临床应用较为广泛,取得了较好的效果,受到了国内外同道的高度关注。
x-刀90年代后期在我国应用较为普及,治疗病例较多,但缺少大宗病例的长期临床结果报道,2000年后随着三维适形放疗、调强放疗等技术的出现,特别是我国全身r-刀的问世,使这一技术在我国的临床应用和发展受到影响,使用的医院和治疗的病例逐渐减少,但是,不容置疑x-线立体定向放疗技术作为一种独特的剂量聚焦方式,可获得高度集中的剂量分布,在实质器官局限小肿瘤的治疗上可取得较高的局控率和较低的放射损伤。而且,赛博刀等新型x-刀技术的出现将会在肿瘤治疗中发挥重要作用。我国研发的全身r-刀存在的问题是机型多、软硬件开发和资源整合不足,使每一种机型都未能尽善尽美,特别是在剂量评估和剂量验证方面有待进一步完善,而且,在临床应用的规范化方面存在严重不足,使这一技术的全面、健康发展受到极大影响,尽管如此,全身r-刀所独具的剂量聚焦优势已被大量的临床结果证明,因此,加强这一技术的临床规范化应用,开展多中心协作和经验积累以及进一步完善设备,对推动我国放疗设备产业和放射肿瘤专业发展具有重要意义。
(2)影像引导放射治疗(IGRT)技术
IGRT即4D放射治疗,以及正在研发的生物影像诱导放射治疗,等等。IGRT在发达国家发展很快,如赛博刀,Tomotherapy,等。
赛博刀(CyberKnife,射波刀)是一种新型影像引导下肿瘤精确放射治疗技术,由美国Stanford大学医学中心脑外科JohnAdler等与Accuray公司合作研发,1994年投入使用,1997年Adler教授首次介绍其临床应用。它是一种立体定向治疗机,整合了影像引导系统、高准确性机器人跟踪瞄准系统和射线释放照射系统,可完成任何部位病变的治疗。将一个能产生6MV-X线的轻型直线电子加速器安放在一个有6个自由度的机械臂上,通过运算X线摄像机及X线影像处理系统所得的低剂量三维影像来追踪靶区位置,执行治疗计划,以准确剂量的放射线来“切除”肿瘤。由于其临床治疗总精度可达亚毫米级别,被认为是目前世界上最为精确的立体定向放射外科/治疗(SRS/SRT)技术之一。与传统的SRS/SRT技术比较,赛博刀具有实时影像引导及无框架定位等优势。自1999年、2001年经美国FDA批准用于颅内肿瘤、颅外肿瘤及良性肿瘤的治疗至今已有8年临床应用历史,全世界已有超过40000个患者接受了赛博刀治疗,尤其是在颅内肿瘤、脊柱肿瘤治疗方面赛博刀治疗积累了丰富的经验,但是在体部肿瘤如肺癌、肝癌、腹腔肿瘤的治疗方面仍停留在小样本,短期随访的研究阶段。随着赛博刀在我国临床应用的逐渐推广及临床治疗病种及病例数的增多,尤其是病情复杂和重症病人治疗的开展,体部实体恶性肿瘤患者行赛博刀治疗前肿瘤靶区金标植入术的并发症需进一步总结,使赛博刀在我国进一步得到规范和合理的应用,使更多的肿瘤患者从中获益。赛博刀比适形、调强、伽玛刀等具有一定的优势,也提供了分次大剂量放疗的可能性,如何选择最佳的分割方式及单次剂量、总剂量,如何评价有效生物剂量等成为研究中亟待解决的问题。在现有的条件下,结合放射生物学、临床医学等的相关知识,优化治疗策略, 进行包括放疗增敏、化疗、热疗甚至其他放疗方式在内的综合治疗,尽可能地提高疗效,则是将来的主要研究方向。
螺旋断层放射治疗(Tomotherapy) 由美国韦斯康星大学麦迪逊分校发明,是影像介导的三维调强放射治疗,它将直线加速器和螺旋整合起来,使治疗计划、患者摆位和治疗过程融为一体,它能够治疗不同的靶区,从立体定向治疗小的肿瘤到全身治疗,均由单一的螺旋射线束完成,通过每次治疗所得的兆伏图像,可以观察到肿瘤剂量分布及在治疗过程中肿瘤的变化,及时调整靶体积的治疗计划。有着常规加速器放疗所无法比拟的优势,为放射治疗医师开辟了一个新的治疗平台,在调强放射治疗发展史上占有重要地位。
7. 放射性粒子植入间质内照射治疗
临床应用的放射性粒子主要是125I和103Pd,分别代表着低剂量率和中剂量率辐射,在放射物理和放射生物学上各有特点。植入放射性粒子的过程,要求在影像指导下完成,符合IGRT要求,放射性粒子一次性植入,达到单次剂量治疗的效果。
随着粒子植入治疗计划系统不断提高与完善,剂量学要求逐步明确,植入治疗设备不断改进,20年来放射性粒子临床应用不断拓宽领域,充分说明放射性粒子在临床应用中的作用与地位,美国,德国,日本的放疗专家都承认放射性粒子最好的适应证应当是前列腺癌低危组的病例,其长期疗效与根治手术或外照射相似,但副作用特别是性功能障碍的发病率较低,治疗时间短,手术方法简便更受病人欢迎。在扩大放射性粒子治疗的适应证方面,放射肿瘤专家与外科专家首先用放射性粒子治疗非小细胞肺癌,我国胸外科专家已经在治疗非小细胞肺癌方面取得相当满意的结果,放射性粒子植入治疗肝癌(原发性肝癌及转移性肝癌)、胰腺癌、软组织肉瘤、骨肿瘤、早期乳腺癌等都在临床试验中得到一定的经验和疗效。国内外来通过内窥镜对空腔脏器肿瘤进行粒子植入的试验,国内进行支架携带或捆绑放射性粒子植入腔道肿瘤(食管、支气管)的试验,都在探索中发展。
放射性粒子的设备已经规范化,其中最主要的是治疗计划系统(TPS),必须能满足质量验证的要求。放射性粒子植入近距离治疗已经迅速在国内发展,据不完全统计,全国每月销售125I粒子20000~30000粒,治疗患者4000~6000例。如此大规模使用的放射治疗方式,必须要有规章制度的指引管理,这项工作应当是迫在眉睫,此外,应当认真交流放射性粒子的临床经验,使放射性粒子的临床使用不仅规范化,而且不断提高疗效,降低毒副作用。
8. 血管内介入治疗和局部药物注射治疗
恶性肿瘤的血管介入治疗是在X线设备的监视下,将抗肿瘤药物和(或)栓塞剂经导管注入肿瘤营养动脉,对肿瘤病变进行治疗。由于导管器械、影像设备的发展,造影剂的不断更新及种类增多,尤其是随着微导管的应用增多,栓塞剂应用经验积累,介入技术不断提高,超选择性肿瘤供血动脉内靶向插管灌注化疗和栓塞治疗成为临床的常规工作。同时,该项技术创伤小,操作简便,因而得到迅速发展,提高了这种治疗方法的有效率,延长了肿瘤患者的生存期。局部药物注射治疗技术,例如小肝癌经皮酒精注射,经皮肝穿刺注射碘化油加化疗药物治疗肝脏肿瘤,复发或残留病灶行无水酒精、乙酸、热盐水注射都在临床常规开展,费用低廉,效果显著。
经导管或经皮穿刺瘤内注射基因治疗成为肿瘤研究的热点,有些研究已经进入动物实验阶段,例如,经肝动脉给予内皮抑素基因治疗肝癌;腺病毒介导的抗K-ras核糖体激酶可抑制胰腺癌细胞的生长并诱导其凋亡;HSV-TK(单纯疱疹病毒胸腺嘧啶核苷激酶)介导的基因治疗在动物模型中已初步获得成功;药敏基因,凋亡调节基因如bcl-2、bax、survivin、及一些抑制肿瘤内血管生成的基因等均在广泛研究中。重组人p53腺病毒基因药物经皮瘤内注射已经进入临床使用。由于基因治疗肿瘤比较局限,到目前为止只有肝癌、胰腺癌、肺癌、神经胶质瘤、大肠癌、喉癌等几种肿瘤可以采用介入导向的基因治疗,介入导向的基因治疗已在某些肿瘤的治疗中显示了很好的疗效,减少了不良反应,给人们带来极大的益处,可以相信,随着研究的深入,介入导向的基因治疗将会在肿瘤治疗中发挥更大的作用,会有越来越多的肿瘤会被根治。
9.神经靶向修复治疗
神经靶向修复疗法使神经生长因子通过介入方式作用于损伤部位。激活处于休眠状态的神经细胞,实现神经细胞的自我分化和更新,并替代已经受损和死亡的神经细胞,重建神经环路,增加脑部供氧和血液循环,促进器官的再次发育。
10,光动力疗法
光动力靶向疗法 是指在光敏剂参与下,在光的作用下,使有机体细胞或生物分子发生机能或形态变化,严重时导致细胞损伤和坏死作用,而这种作用必须有氧的参与,用光动力作用治病的方法,又称为光动力疗法(photodynamictherapy,PDT)。靶向药物即光敏剂(光动力治疗药物)的研究是影响光动力治疗前景的关键所在。光敏剂是一些特殊的化学物质,其基本作用是传递能量,它能够吸收光子而被激发,又将吸收的光能迅速传递给另一组分的分子,使其被激发而光敏剂本身回到基态。
靶向疗法在疾病上的应用:尖锐湿疣、痤疮、鲜红斑痣、肿瘤等
疗法优势:
(1)创伤很小:借助光纤、内窥镜和其他介入技术,可将激光引导到体内深部进行治疗,避免了开胸、开腹等手术造成的创伤和痛苦。
(2)毒性低微:进入组织的光敏药物,只有达到一定浓度并受到足量光照射,才会引发光动力学反应而杀伤靶向细胞,是一种局部治疗的方法。人体未受到光照射的部分,并不产生这种反应,人体其他部位的器官和组织都不受损伤,也不影响造血功能,因此光动力疗法的毒副作用是很低微的。
(3)选择性好:主要攻击目标是光照区的病变组织,对病灶周边的正常组织损伤轻微,这种选择性的杀伤作用是许多其他治疗手段难以实现的。
(4)适用性好:对不同细胞类型的病灶组织都有效,适用范围广;而不同细胞类型的病灶组织对放疗、化疗的敏感性可有较大的差异,应用受到限制。
本文地址:http://www.dadaojiayuan.com/jiankang/295506.html.
声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:douchuanxin@foxmail.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
下一篇: “鳍识别”技术可自动判定鲨鱼身份