2016年09月15日讯 内切酶经过改造可以成为强大的DNA编辑工具,比如ZFN、TALEN、风头正劲的CRISPR-Cas系统和引起争议的NgAgo技术。不过这些技术都是通过序列识别来实现靶向切割的,会受到序列偏好的限制。
南京大学的研究团队九月十五日在Genome Biology杂志上发表了一项突破性成果。他们开发了结构引导的DNA编辑新技术,不再受到靶序列的限制。这篇文章的通讯作者是南京大学医学院附属金陵医院的周国华(Guohua Zhou)研究员、南京大学模式动物研究所的赵庆顺(Qingshun Zhao)教授和朱敏生(Minsheng Zhu)教授。
FEN1(flap endonuclease-1)是一种识别3’ flap结构的内切酶。研究人员将FEN1与Fn1(Fok I)的剪切结构域结合起来,制造了结构引导的DNA编辑工具--SGN。SGN(structure-guided endonuclease)能够识别靶序列与向导DNA(gDNA)形成的3’ flap结构,通过Fn1二聚化对靶序列进行切割。研究显示,一对gDNA可以引导SGN在斑马鱼胚胎的基因组中正确切割报告基因和内源基因。这项研究指出,SGN能特异性识别和捕获目标,准确切割任何DNA序列。
CRISPR-Cas原本是细菌抵御病毒的重要武器,现在它已经成为了基因组编辑的强大工具。CRISPR-Cas不仅操作简便,而且还有着很强的可扩展性,被广泛应用到各种生物中,催生了大量的研究成果。CRISPR激活(CRISPRa)和CRISPR抑制(CRISPRi)特别适合分析非编码RNA的具体功能。前不久,The Scientist杂志联合CRISPR的开发者和使用者共同编写了使用CRISPRa和CRISPRi的入门指南,帮助研究者们更好的研究和调节基因组的编码和非编码区域。
Molecular Cell杂志此前曾推出技术特刊,介绍了生物学领域近年来出现的新兴技术。其中一篇文章对RNAi、TALEN和CRISPR这三大基因组编辑工具的核心技术进行了全面比较,并且为基因功能研究提供了一份实用指南。研究者们可以根据自己的需要,简单直观的找到最适合自己的技术。
今年五月,河北科技大学的生物学家韩春雨(Chunyu Han)在Nature Biotechnology杂志上发布了一种可以替代CRISPR-Cas的基因组编辑技术,NgAgo。他的研究团队证实,NgAgo酶可以实现DNA引导的哺乳动物基因组编辑。这项成果一经发表就引起了国内外的强烈关注,至今争议不断。
天津大学DNA存储新算法可使信息保存千年万年,这会对DNA编辑以及信息存储行业带来非常大的利好,甚至会深远的改变这两个行业的格局 。
9月17日,天津大学的合成生物学团队在元英进教授的带领下,突破了DNA存储技术,创新DNA存储算法, 并将十幅精选敦煌壁画存入DNA中, 而且做到了在实验室常温下存储长达千年时间之久,如果是在9.4℃下甚至可以保存两万年。 这无疑是一项非常重大的创新,人类进入信息时代之后,每天产生需要存储的数据量是非常庞大的,依靠人类目前的存储手段,虽然在容量方面可以承受,但是由于磁存储或者光存储技术有一定的局限性,一些重要的资料需要在一定的时间后进行转移,否则就有丢失的危险,而DNA存储技术一旦得到应用,那么人类将会获得无限的存储空间以及几乎永恒的保存周期,这无疑是信息技术的一项重大突破。
就当前来看,这项技术广泛应用还有一定的限制,但是这无疑会对DNA编辑以及存储行业带来巨大的机遇,就像是新能源汽车电池方面的突破一样,将会带来巨大的财富,同时这对于信息存储行业也非常具有颠覆性,毕竟有了更加廉价以及更安全的存储空间,能够极大的降低存储行业的门槛以及成本,当然这项技术距离实际应用还有很长的路要走,就比如DNA容易遭到破坏,如何保障信息的安全等,不过这些问题相信迟早都会解决,甚至会产生一个新的行业。
天津大学DNA存储新算法可使信息保存千年万年,你觉得这会对哪些行业带来利好?欢迎留言讨论。
2008年7月20日,南大教授经过多年研究在《自然》发表的《真核生物中插入/缺失增加其周围序列的突变率》这篇论文中大胆提出“Indel诱变假说”。
2005年起,他们通过生物信息学技术对人、黑猩猩、恒河猴、小鼠、果蝇、水稻和酿酒酵母等不同类别生物的基因组序列进行了比对分析。研究后发现,DNA的插入/缺失(Indel)会引起其周围一系列的变异。在此基础上,他们提出了“Indel诱导自发突变机制假说”,从源头上回答了“遗传变异究竟是如何形成的”这一生命科学面临的基本问题。
基因突变主要是指 DNA中核苷酸顺序、种类和数量的改变。突变又分为自发突变和诱发突变。长期以来,学术界对自发突变机制的经典认识是,自发突变具有随机性和稀有性。但随着上个世纪90年代以来DNA测序技术的突破性进展,研究者们对自发突变在基因组中的数量和分布有了精确估计,并普遍认为“自发突变在基因组中不是随机分布的,突变热点普遍存在于基因组中”。这一结论对传统的自发突变随机性和稀有性的认识形成巨大挑战,世界科学界至今没有找到一种普遍的机制来解释这一重大的科学疑问。
田大成教授 等发现的遗传突变新机制成功破解了这一悬念:第一,基因组各区域的突变率很不相同,自发突变的数量是由Indel的数量和密度所决定,自发突变的数量在Indel附近并不稀有。但Indel本身是一种点突变,其发生有一定的随机性,因而其诱发的突变也有一定的随机性;第二,找到了多数自发突变的发生根源,也就是说,生物多样性的最初变异来源,主要是由Indel诱导产生;第三,自然选择在很大程度上是通过对 Indel 的选择而实现,而自发突变率的高低很大程度上也是自然选择的结果;第四,生物通过调节自身变异能力而适应环境的能力,比人们原先想象的要大得多,即突变在进化中的作用相当巨大。
该研究成果不仅回答了大量科学问题,在解开肿瘤发生机制、作物遗传育种等方面也具有重大潜在应用价值。
《自然》评审专家Kondrashov在他对此论文的实名评价中这样写道:“这是一个非常有趣、富有启迪的发现,将会在科学界引起强烈反响。”
在丰富多彩的生命世界,究竟是什么造就了诱人的生命多样性?南京大学教授经过多年潜心研究大胆提出“Indel诱变假说”,用新发现的“遗传突变的普遍机制”破解了生物学上的诸多悬念。7月20日,最新出版的国际顶尖杂志《自然》介绍了南大自主完成的这一
To destroy is easier than to create ,摧毁总比创造要简单,这句话转换到基因编辑上就是:knockout比knock in容易。因为knockout只要摧毁基因,而knockin则是要创造一个新的“基因”,这个新”基因“不仅仅正确表达,还需要有相应的功能。换言之,knockout是non-specific,而knockin则是specific。
对于干细胞、悬浮细胞、原代细胞以及静息状态的细胞而言,转染已经相当困难,基于转染方式的knockout则是难上加难,而knockin则是上下左右为难。假如你的课题需要knockin一些特殊标记,而且不止一次需要knockin一次,那么有没有什么讨巧的办法既可以减轻工作量,又可以specific?今天我们就来讲 重组酶介导的盒式交换 (recombinase-mediated cassette exchange,RMCE) ,个人关于这个技术的描述是: 换药不换汤 。
本文的1、2点是基因重组背景知识和gateway重组的介绍, 如不需要,可直接跳到第3点,直达RMCE(宁可不看一二,也绝不能错过三) 。
在动笔写这篇文章RMCE之前,突然发现目前我们用到的几乎所有基因编辑手段,都是一种特定生物学过程的结果,那就是-- 重组(Recombination) 。例如我们在前面的文章中有提到过 HDR(Homology directed repair)介导的CRISPR-Cas9技术,就是依赖基因的同源重组,将供体片段替换到基因组中 ;此外,在piggyBac文章中提到的基因 转座 (Transposition )*:DNA从某一位置移动到基因组上另一位置,也属于基因重组的范畴,并且是一种高度特异的基因重组。因此,在我们了解RMCE之前,需要加强一遍重组在我们基因编辑技术知识谱系的重要程度。
一类:自然发生的重组类型至少有以下四种:
(1) General or homologous recombination(常规/同源重组): 发生在序列非常相似的DNA分子之间,如二倍体生物中的同源染色体。同源重组是TELEN以及HDR介导的CRISPR-Cas9的基因编辑的基础,由于这种方法需要供体包含有非常长的同源臂,从而可以达到精准的效果,但精准度越高,其成功率又随之降低。
(2) Illegitimate or nonhomologous(不合理/非同源重组): 由于这种重组方法并不需要有长同源序列,看起来“不合理”, 所以被称之为不合理(非法)重组。这种重组可造成随机突变,在科学研究中也有用到。
(3) Site-specific recombination(位点特异性重组): 顾名思义,就是需要有特定的识别位点才能开启的重组方式,而这些特定的识别位点通常长度在几十bp左右, gateway recombination和今天我们要讲的RMCE则属于这种,由此可以想象一下RMCE也需要独特的识别位点 。
(4) Replicative recombination: 可以看到复制性转座属于这种类型。
二类:人为改造/创造的重组类型:
(1) Plasmid Insertion Recombination(质粒插入重组): 在体外使用核酸酶可对质粒进行酶切,使用连接酶可将质粒和DNA片段重组连接。其人为性不仅仅是因为这是体外实验,同时人类也可以使用PCR的方式合成出相应的酶切位点,从而增加质粒的可编辑性,这对于大家来说就是家常便饭。
(2) Gene Gun Recombination(基因枪重组): 主要用于植物工程,将包裹在金粒子上的DNA分子轰入活细胞中,最后该DNA溶液就可并入细胞的基因组中。这是一种物理改变DNA传递方法,同时基因传递的方法有以下几个分类:
从基因枪的原理我们理解到, 改变DNA的传递方法,也是一种人为的重组方式 。因此上图还将(3) Virus Replication Recombination(病毒复制重组) 和(4)电转等等重组方式展现出来,这里就不再细说。
Gateway重组是常用质粒元件置换方案 ,主要用于将目的元件在不依赖于核酸酶的方式,置换到想要的backbone上。前面说到,CRISPR-Cas9是从噬菌体侵入细菌时细菌的抵抗得到启发,而gateway重组也是一个向自然界学习的典型例子。λ噬菌体在整合因子(IFN,Int)的帮助下, 将自身的attP位点和大肠杆菌的attB位点进行位点特异性重组,从而将自身的基因组整合到大肠杆菌中,此时attB & P产生两个新位点:attL & R 。因此人们从这上得到启发,将att位点克隆到质粒中,这样就可以轻松置换两质粒的原件,从而达到“换药不换汤”的目的。
从上图可知:
(1)att位点的相关特性。
(2)以右图为例,现想要 将左边紫色骨架质粒的CaMPARI原件置换到右边黄色骨架质粒上 ,由于两个骨架质粒有可以互相重组的 attL1 & attL2位点 。将两种质粒放在同一个反应系统中,使用LR clonase,即可轻松将CaMPAR从紫色骨架转移到黄色骨架上,从而得到一个新质粒。而 ccdB是一个自杀基因 ,当细胞被转入带有ccdB的质粒后,大肠杆菌将不再生长,因此平板/培养基 只剩下含有目标质粒 的大肠杆菌。attL1 & L2重组后形成attP1 & P2的新位点。
(3)这种元件置换的方法,归根结底就在于供体和受体之间具有可重组的识别位点,按照这样的思路,人们可以将多种特殊的识别位点包装为元件置换系统。
目的:给质粒插入RFP标签
(1)挑选质粒
供体质粒: mRFP1Rab5 ;
目标质粒:pDONR-P2r-P3
(2)使用snapGene完成模拟
终于回到开头,在knockin本身就很难的情况下,课题设计还需要多个knockin。如何做到只knockin一次,后面的”knockin“全部由RMCE完成。以上gateway recombination只是开胃小菜,gateway主要用于体外构建载体,而 RMCE则可在体内达成元件转换 的作用。上一节我们了解到元件置换的基本原理就是:需要特点 识别位点+特定的重组酶 。活细胞及生物体内用到的位点特异性重组系统就是大名鼎鼎的 Cre-loxP、Flp-FRT以及Dre-rox 。以Cre-loxP系统为例:
看到上面的图是不是感觉很混乱并不好记忆,为什么loxP方向相同是倒置,相反是敲除或者移位。很多文章会告诉上图的内容,但根本的原因是loxP相当于影子分身,每个之间都可以互换,而且换的时候要求完全一样(影子分身能不一样?)。
我们想象一下上图deletion的状况,loxP-gene-loxP片段被Cre酶切除出来后可能出现的结果:
(1)左右两个loxP由于还可以和切除位点互补重组,因此,切出来的loxP-gene-loxP片段再次被重组回去,其结果就是,切了跟没切一样。因此,再次印证了一句话,切开只是第一步,DNA repair才是决定结果的关键一步
(2)按道理左边loxP被Cre切开后,重组时应该结合自己原来残留的缺口,但正是因为长得一样,它认错了,把右边loxp剩下的缺口给占用了,导致gene-loxP片段被挤出基因组,此时就达到了敲除的效果。
根据以上描述,我们想知道,怎样才能解决,切了相当于没切的问题呢?
在gateway中我们学到,att位点可有多种变体,同样 loxP位点也是 ,如下图所示, 不同loxP位点之间也有特定的重组方式和亲和力 [2]。可以看到:
(1)野生型loxP可以和包括自己在内的所有loxP突变体进行重组。
(2)大部分loxP变体只能和少数loxP变体进行重组,例如:loxP66可以和loxP71、511等进行重组,最后形成相应的loxP位点。
(3)少部分loxP变体只能和自己进行重组,例如lox2272,每一种loxP变体的出现,都是在完善和扩大Cre-loxP系统,使之可使用性更强、更广。
目的:通过元件替换方式将细胞颜色荧光标签由绿色改为红色
Case 1
可以看到:loxP66-GFP-loxP71元件在Cre重组酶的帮助下,被替换为loxP66-DsRed-loxP71,由此,细胞的荧光颜色由红色转为绿色。但这个系统的效果看似并不那么好,只有少数细胞表现为红色,而大部分仍然是绿色的,而造成这个结果的原因是什么?欢迎留言给出自己的答案,下周我会将自己的解读放上来。
在TELEN、ZFN和CRISPR-Cas9技术的出现,使得knockin所需的同源臂长度从原来的十几kb,缩小到1 kb以内,大大降低了knockin的难度。然而即使是新技术的出现,knockin仍然具有较大的难度,尤其是knockin的效率会随着插入片段的长度增加而降低,超过3kb的knockin难度大大增加。个人小小整理RMCE使用情况如下:
(1) 早期RMCE技术主要和慢病毒、转座子系统结合 :使用慢病毒或转座子系统(睡美人SB或piggyBac)将master载体整合到基因组中, 构建出master cell line,之后在Cre重组酶的帮助下,将目标序列置换到master line中,从而一步得到新的细胞系。 慢病毒和转座子系统有高效的特点,但其机制是随机整合,因此当课题需要精确编辑时,这种整合方式则无法被采用。
(2)使用TELEN、ZFN技术将master载体质粒knockin到细胞中,构建master line,随后的故事同上。这个方案运用了精准敲入,因此难度增加不少,但系统成熟不少。 有人可能会说,knockin我不怕难,我可以一个一个的knockin,不需要使用RMCE系统 。但需要考虑到同一个细胞系, 随着培养时间的增加,细胞系内异质性也会增加 。有些课题对基因背景的均匀性有着变态的需求,此时 使用RMCE系统置换元件的方式,可以得到几乎一致的基因背景,但knockin序列不同的实验细胞系,从而提供更均匀稳定的实验背景 。
(3)敲入短片段master载体,通过Cre将长片段置换到master line中,完美避开长片段敲入极其困难的困境。
(4)对于基因编辑困难的细胞,能获取一个master line,会让整个课题组的工具系统上升一个等级。做过knockin的人都知道这个过程的困难。以TELEN系统为例,需要共转至少3个质粒:含有TELEN同源臂的+目的基因的载体,TELEN导航质粒Left + Right。以干细胞为例,转染效率是1%,那么一百万个细胞可获得约1万个被转染的细胞,而被共转的细胞则可能只有500个,这500个细胞中,真正被纯合knockin的细胞可能只有几个。按照传统挑单克隆的方式,那么很有可能就是培养了100个单克隆细胞系,最后只有1个是真正需要的,这个工作量想起来都让人觉得害怕。不过一般使用药物筛选方式,可最后筛出抗药生长的单克隆团,但分离出单克隆的步骤仍不可少。
RMCE可以提供更为均匀稳定的实验背景,但其优势也限制了其应用,因为master line敲入的位点限制了后续的应用。例如master line敲入位置是AAVS1位点,而其实课题需要的多个knockin是在多个不同位点的。此时RMCE系统则起不到作用。是的,RMCE是基因编辑技术的补充,不能要求其完成一切需求,但有了它,我们能用的工具就更多了。个人觉得, AAVS1 knockin的master line非常实用,可以轻松构建荧光标签细胞系,同时更多的inducible细胞系也更容易获取 。单独把RMCE拿出来讲,它可能不够出彩,它只是一个默默的扳手,看起来不起眼,但在关键时刻,还真香。
Reference:
[1] Araki, Kimi, Masatake Araki, and Ken‐ichi Yamamura. "Site‐directed integration of the cre gene mediated by Cre recombinase using a combination of mutant lox sites." Nucleic acids research 30.19 (2002): e103-e103.
基因打靶技术是从20世纪80年代发展起来的,是建立在对同源重组不断了解的基础之上。首先是以酵母这种较为简单的真核模式生物为基础,来对相关技术进行研究。随着外源DNA导入酵母细胞方法的建立、标记基因有效选择的利用、同源重组转化子筛选系统的建立、载体同源序列DNA(靶标)双链断裂提高同源重组效率的利用,使得基因打靶技术逐渐成熟起来。而对于哺乳动物细胞,由于其基因组比酵母细胞要大且复杂,基因打靶的成功率很低。因此要将基因打靶技术应用于哺乳动物,还需要新的策略。1989年,利用胚胎干细胞,美国科学家马里奥·卡佩奇和奥利弗·史密斯与英国科学家马丁·埃文斯,将基因打靶技术成功地应用于小鼠;他们也因此获得了2007年诺贝尔生理学与医学奖。
2013年3月,云南中科灵长类生物医学重点实验室、中科院昆明动物研究所、南京医科大学、南京大学、同济大学等多家单位合作,利用目前世界最新的基因组编辑技术CRISPR/Cas9和TALENs实现猕猴和食蟹猴两个物种的靶向基因修饰,同年10月和11月分别获得世界首例经过CRISPR/Cas9基因靶向修饰及TALENs基因靶向修饰的两只小猴。
本文地址:http://www.dadaojiayuan.com/jiankang/298592.html.
声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:douchuanxin@foxmail.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
下一篇: 复旦长江学者:青蒿衍生物预防肥胖