登录
首页 >> 健康生活

bat细胞上采用两种受体作为潜在的治疗靶点

佚名 2024-05-15 21:48:53

bat细胞上采用两种受体作为潜在的治疗靶点

根据“faseb杂志”在线发表的研究,科学家已经发现通过在bat细胞上采用两种受体作为潜在的治疗靶点,增加了代谢增强的棕色脂肪组织(bat)(“好”脂肪)的量。两种受体trpm8和trpp3都与人类中bat的产生有关,并且可能被某些食物和可能的预想新药激活。这对于治疗肥胖、糖尿病和相关的代谢紊乱综合征有影响。

参与该工作的瑞士苏黎世应用科技大学细胞生物学和组织工程中心生命科学与设备管理系的研究人员michaelragunath博士说:“我们的研究确定了trpm8和trpp3作为涉及人类棕色脂肪生成的药物靶点的潜力,以开发可以调节个体能量消耗及血糖控制的物质。”“面对越来越多的糖尿病和肥胖人群,我们的工作有助于促进棕色脂肪的非肾上腺素能刺激物以及影响棕色脂肪生理学的功能性食物的开发。”

为了做这个研究,ragunath和他的同事们使用了两种来自人类供体的前体细胞:骨髓干细胞(msc)和皮下腹部脂肪细胞。它们诱导这些细胞变成白色或棕色脂肪,并且在平行培养物中允许细胞保持未分化。在此过程中分析了所有27个trp通道。一些trp从未表达,有些trp不断表达,一些仅在棕色脂肪细胞分化过程中出现。trpm8和trpp3在分化棕色脂肪中以较高水平存在,但在祖细胞中不存在。为了研究trpm8的作用,他们使用特异性的活化剂或抑制剂,发现trpm8的刺激强烈地促进褐变,而抑制剂的存在阻碍了这一过程。通过使用遗传操作来消除trpp3的功能以检测其功能,并且这防止了棕色脂肪而非白色脂肪的形成。

faseb杂志总编辑thorupederson博士说:“只有当人们开始认为褐色脂肪区域的每一扇门已经开放时,这里就会出现嗅觉受体轴。“如果进一步的研究将这一点与食品识别(进而偏好选择)联系在一起,将会取得重大进展。”

热点综述 | circRNA在癌症和肿瘤学中的新作用

在过去的十年中,环状RNA (circRNAs)作为一大类主要是非编码RNA分子出现,通过不同的作用机制在癌症的发生和发展中发挥关键作用。此前,《 Nature Reviews Clinical Oncology 》发表了题为“The emerging roles of circRNAs ?in cancer and oncology”的综述文章, 回顾了目前关于circRNA在癌症中的生物发生、调节和功能的知识,以及它们作为生物标记物、治疗剂和药物靶点的临床潜力。

circRNA的生物生成依赖于典型的剪接体机制,但其效率远远低于常规的线性剪接。然而,一旦circRNAs形成,它们就特别稳定,并能在细胞质中积累。

典型RNA剪接通过内含子将上游5′剪接位点(剪接供体)连接到下游3′剪接位点(剪接受体),导致相邻外显子之间的内含子被移除。然而,许多前mRNA可以进行反剪接,即下游剪接供体与上游剪接受体相连接,跨越一个或多个外显子,产生一个共价封闭的circRNA。对于许多基因来说,前mRNA的线性剪接和反剪接之间会发生竞争,有几个因素会影响这两种剪接方式的平衡。在癌症中,这种平衡经常被破坏,导致circRNA的表达失调。

反向剪接需要在下游剪接供体和上游剪接受体位点两侧的内含子上绕圈,使这些剪接位点接近,并产生外显子circRNAs(EcircRNAs);或者,如果内含子保留在环中,则产生外显子-内含子环状RNA(EIciRNAs)。反向内含子重复序列(如Alu元件)、非重复互补序列或RNA结合蛋白(RBPs)的二聚化可促进环状结构的形成。

一种新型的circRNAs,即readthrough?circRNAs,是通过转录终止的失败而产生的,转录本由此延伸到下游基因并随后反向扩增。因此,circRNA可以包含来自相邻基因的外显子。转录终止的整体效率已被证明在癌症中发生了改变,这增加了readthrough circRNAs影响疾病表型的可能性。

由于易位连接上游和下游内含子中互补序列的并置,染色体易位可导致融合circRNAs(f-circRNAs),这可能独立于其融合蛋白对应物而促进癌症的发展。与致癌融合蛋白结合,f-circRNA甚至可以促进体内白血病的进展。

此外,circRNA可以通过其宿主基因启动子的超甲基化或改变组蛋白修饰而经历癌症特异性转录沉默。

EcircRNAs主要定位于细胞质,而EIciRNAs和ciRNAs通常保留在细胞核中。circRNAs如何从细胞核中输出尚不完全清楚,但ATP依赖的RNA螺旋酶DDX39A和剪接体RNA螺旋酶DDX39B已被证明参与这一过程,其方式取决于circRNA的长度。此外,N6-甲基腺苷(m6A)修饰经常出现在circRNA中,并被证明会影响其出核。

circRNA对线性RNA降解机制有抵抗力,circRNA降解的机制尚待完全阐明。例如ciRS-7(也称为CDR1as),可以通过依赖于特定miRNA的高度互补结合位点miR-671的方式降解,该位点可以触发Argonaute 2(AGO2)对产生的双链RNA双链体的切割,Argonaute 2是RNA诱导沉默复合物的关键成分。在一个更全面的层面上,核内核糖核酸酶与circRNA降解有关。此外,高度结构化的circRNAA可能会受到ATP依赖性解旋酶UPF1和G3BP1介导的降解,其降解方式可能取决于G3BP1固有的内切核酸酶活性。

circRNA发挥其功能从而影响癌症发生和发展的机制多种多样。circRNA的序列和稳定性、转录后修饰、二级结构以及它们的积累方式和定位决定了它们的功能。

MicroRNA sponging 。 位于细胞质中的circRNAs可以通过对miRNAs的海绵化作用参与转录后的基因调控,从而阻止特定的miRNAs与靶mRNAs相互作用并抑制它们。最好的miRNA海绵候选者ciRS-7含有超过60个miR-7结合位点,可能在某些组织中作为竞争性内源性RNA(ceRNA)发挥作用。然而,ciRS-7在癌细胞中作为ceRNA发挥作用的观点受到了挑战,在推断circRNA的miRNA海绵特性时,应考虑该领域的一些争议。CircHIPK3是另一个具有潜在海棉特性的circRNA的例子,它可能结合几种不同的miRNA,包括抑制肿瘤的miR-124,沉默这种circRNA可以抑制细胞生长。

蛋白质相互作用 。 一些circRNAs可以与RBP相互作用,起到蛋白质海绵或抑制剂的作用,可以作为支架使不同的蛋白质接近,或者可以将蛋白质招募到特定的亚细胞隔室。例如一种在HeLa细胞中具有蛋白质海绵特性的circRNA,即circPABPN1,它与线性 PABPN1 mRNA竞争结合ELAV1(也称为HuR),从而抑制PABPN1翻译。

circRNA的翻译 。检测circRNA衍生肽或蛋白质的实验存在许多缺陷,因此应仔细设计。作为一个类别,circRNAs通常被认为是非编码的;然而,包括circ-ZNF609和circMbl在内的特定circRNA含有内部核糖体进入位点(IRES),可以进行不依赖于cap的翻译,而包括circARHGAP35在内的其他circRNA可以进行m6A依赖翻译。一些circRNA,包括一个来源于E-钙粘蛋白基因(CDH1)的circRNA(命名为circ-E-Cad),编码在癌症中具有潜在功能相关性的独特肽,本综述稍后将进一步讨论。circRNA还可以编码与癌症功能相关的较大蛋白质(如circARHGAP35和circMAPK1产生的致癌蛋白质)。此外,来源于病毒的circRNA可以被翻译,如来源于人乳头瘤病毒的circE7,其在宫颈癌和头颈癌中大量表达并具有致癌活性。

circRNA主要是在疾病背景下研究的,但越来越多的证据也表明在正常生理条件下具有重要功能。在这里,我们关注与癌症相关的细胞内稳态过程。有趣的是, 多项研究指出了特定circRNA在维持胚胎和成人干细胞的干细胞和多能干细胞中的关键作用,而其他研究表明circRNA是干细胞分化和组织发育、维持和恢复的重要决定因素。

在致癌转化过程中,经常观察到从头获得的干细胞和发育基因表达程序,由此产生的细胞具有无限的自我更新潜力。因此 circRNA包括上面描述的那些作用,有望在解除管制时在癌症发展中发挥作用。 例如,circ-ZNF609已在癌症中被广泛研究,并显示通过增强肝癌细胞的干性促进肝癌的发生。在机制上,circ-ZNF609通过分泌miR-15a-5p和miR-15b-5p激活HCC细胞中的Hedgehog信号,其参与Hedgehog信号通路转录因子GLI2的转录后沉默。CircZKSCAN1和circEPHB4是另外两个分别调节肝癌和胶质瘤中肿瘤干细胞特性的circRNA的例子。此外,来源于E-钙粘蛋白前体mRNA的circ-E-Cad编码肽C-E-Cad,与EGFR相互作用并激活下游STAT3信号,从而促进癌细胞增殖、存活和侵袭,从而有助于维持胶质母细胞瘤中的癌干细胞状态。源自致癌病毒的circRNAs也可能诱发癌症干细胞的特性,如胃癌中Epstein-Barr病毒衍生的circLMP2A就是一个例子。

除了癌细胞干性之外,在所有常见的癌症类型和许多罕见的恶性肿瘤中都观察到广泛的circRNA表达失调,在快速增殖的癌细胞中circRNA水平通常降低。

调控细胞周期的circRNA。 已发现许多单独的环状RNA促进细胞周期进展。研究者们发现许多circRNA是细胞增殖所必需的,包括circHIPK3和circKLHL,对于这些circRNAs,用短发夹RNA介导的敲除法也观察到了类似的表型。对circFAM120A进一步的机制分析,发现这种circRNA通过竞争性地与IGF2BP2(一种翻译抑制剂)结合,促进了来自其宿主基因FAM120A(一种参与AKT信号通路的肿瘤基因)的mRNA的有效翻译,尽管circRNA的含量比mRNA少。这一发现意味着IGF2BP2优先与circRNA转录物结合,而circFAM120A的m6A修饰被证明是其增强IGF2BP2结合能力的原因。与FAM120A一样,MAPK1是一个直接参与信号转导的致癌基因,导致细胞增殖。在肺鳞癌中,源自TP63基因的circRNA的上调,circTP63也能促进细胞增殖。Circ-ZNF609还通过调节G1/S转换直接参与细胞周期。CircPVT1来自非编码的PVT1基因座,是另一个在癌症中被广泛研究的circRNA,大多数研究表明其致癌活性是通过增强细胞周期的进展。

circRNA与细胞凋亡或自噬。 尽管获得了大量的遗传和表观遗传畸变,避免细胞凋亡是癌细胞继续增殖的关键--因此也是肿瘤生长的关键。许多单独的circRNAs已经被证明可以通过抑制或诱导细胞凋亡来发挥作用。后者的一个例子是circ-Foxo3,它与MDM2结合并阻止其与FOXO3相互作用,从而抑制其宿主基因的蛋白体产物的泛素介导的蛋白体降解。自噬是另一个在癌症中起重要作用的过程,已证明可促进自噬的circRNA实例包括卵巢癌和乳腺癌中的circRAB11FIP1和circr-DNMT1。

参与血管生成的circRNA。 血管生成是癌细胞进入血管系统并随后转移的关键。在膀胱癌中,circHIPK3的下调与侵袭性肿瘤表型和不利的临床结果有关,可能反映了这种circRNA在血管生成和转移中的抑制作用。circHIPK3已被证明能海绵化miR-558,鉴于它与启动子区域结合并上调HPSE的转录,其具有miRNA的非经典功能。HPSE编码肝素酶,这是一种内切糖苷酶,可裂解细胞表面和细胞外基质硫酸肝素蛋白多糖,导致血管内皮生长因子(VEGF)和基质金属蛋白酶9(MMP9)的释放,两者都是重要的促血管生成因素。circSMARCA5是抑制血管生成的circRNA的另一个例子。相反,circRNA可以诱导血管生成,例如circ-CCAC1在胆管癌中的应用和circPOK在肉瘤中的应用。

circRNA与无限增殖。 保护染色体末端的端粒对于癌细胞无限增殖的能力至关重要,一些circRNA被认为可以影响端粒酶的活性,包括circMEG3和circWHSC1。

circRNA与细胞能量。 癌细胞需要重新规划它们的能量代谢,以便在氧气和葡萄糖供应的波动条件下不断为细胞的生长和分裂提供能量。α-烯醇化酶由ENO1编码,是一种重要的糖酵解酶,有助于癌症的进展。有趣的是,该基因还产生一种circRNA:circ-ENO1,已被证明通过分泌miR-22-3p促进糖酵解和肺腺癌的进展,导致其线性mRNA对应物的上调。而circATP2B1则是促进糖酵解的另一个例子。

circRNA和肿瘤免疫监测。 免疫系统协调各种保护性反应以对抗肿瘤的发展,内源性circRNA通过结合和抑制蛋白激酶R(PKR)参与抑制先天性免疫反应。核酸传感器RIG-I也可以检测到外源(但不是内源性)circRNA,它诱导I型和III型干扰素应答。circNDUFB2通过破坏其解旋酶和CARD结构域之间的分子内相互作用来激活RIG-I,从而增强了RIG-I和线粒体抗病毒信号蛋白(MAVS)之间的相互作用,从而增强了NSCLC细胞的免疫原性。来自小鼠模型的数据证实了这些发现。

circRNA在侵袭和转移中的作用。 癌细胞的转移扩散是癌症最致命的方面。EMT是腺癌进展的关键过程之一,并已被证明其由若干circRNA和circRNA生物发生因子促进。其他已被证明促进转移的circRNA包括分别来自小细胞肺癌和非小细胞肺癌中FLI1(FECR)和EML4–ALK融合基因(F-circEA-2a)的circRNA。

circRNA通常以组织特异性甚至细胞类型特异性的方式表达。此外,许多单个的circRNA在肿瘤中相对于相邻非恶性组织有差异表达,并与某些临床特征相关,如肿瘤大小、组织学分级、淋巴结、转移(TNM)分期等。这些发现突出了circRNA作为有前途的诊断和预后生物标记物的重要性,其在生物流体(如血浆、唾液和尿液)中的高稳定性和可检测性进一步证实了这一点。

circRNA作为预后生物标志物。 ciRS-7被认为是通过在癌细胞中海绵化miR-7而发挥癌基因的功能,并与大多数癌症类型的预后不良有关。然而,2020年公布的数据显示,经典癌基因驱动型腺癌的癌细胞中完全没有这种circRNA。虽然这些发现似乎相互矛盾,但ciRS-7在位于这些肿瘤内的基质细胞中非常丰富,并且在包括结肠、乳腺和肺在内的多种腺癌中,高比例的基质细胞是一个强有力的独立预后因素。在一些研究中被认为是预后生物标志物的其他circRNAs包括circUBAP2和circLARP4。尽管circRNA的 panels或signatures被证明可能是更可靠的生物标志物,但是单独的circRNA也可能具有预后价值。

circRNA作为诊断生物标记物 。有证据表明circRNA具有区分癌症亚型的潜力,这通常有助于指导治疗决策。例如,在非小细胞肺癌中,circACVR2A的低表达和circCCNB1的高表达可能分别有助于区分腺癌和鳞状细胞癌。此外,circRNAs也可以被非侵入性地检测,并可能被用于诊断。

circRNA作为预测性生物标记物。 通过预测对治疗的反应,circRNA可以帮助临床医生在限制毒性的同时实现最佳患者结局。例如在乳腺癌和前列腺癌中,可以通过测量特定circRNA的表达水平来预测内分泌治疗反应。circRNA的表达水平也可能有助于预测对各种化疗药物的反应。例如,在鼻咽癌患者中,基于circCRIM1表达和N分期,可以预测对含多西紫杉醇的诱导化疗的不同反应。此外,临床前研究表明,circRNA也在免疫治疗抵抗中发挥作用。circRNA还可能用于预测未来治疗的不良反应,有数据表明circRNA作为各种毒性的保护剂或介导剂的功能作用。

用于早期检测的circRNA。 鉴于大多数癌症一旦转移就无法治愈,早期癌症检测是降低发病率和死亡率的关键。由于其高稳定性和组织特异性表达,circRNA作为早期癌症检测的微创生物标记物具有巨大潜力。一项多中心研究的数据表明,基于血浆的circRNA生物标记物在早期检测HCC方面表现良好,在区分HBV相关HCC患者与非HCC患者方面的准确性高于甲胎蛋白。circRNA也被证明富含血清外小体,并具有早期诊断结直肠癌的潜力,而另一项研究显示,来自血清细胞外小泡的两种circRNA,circHIPK3和circSMARCA5,,在胶质母细胞瘤的早期诊断中具有强大的潜力。

circRNA功能丧失疗法 。circRNA在肿瘤发生中的既定功能作用将其确定为抗癌治疗的明显靶点。使用反义技术可以选择性地抑制或降解致癌的circRNA。一种选择是使用CRISPR–Cas9系统,但是涉及伦理及不可预测的选择性剪接事件风险;可以选择RNA干扰、CRISPR–Cas13系统等更常见的方式进行。目前为止,大多数功能缺失的研究都是在临床前动物模型中使用RNAi进行circRNA敲除,并且还没有circRNA靶向治疗进入临床试验。

circRNA功能获得疗法 。 新的癌症治疗也可能基于circRNA功能的获得,或者通过天然肿瘤抑制因子circRNA的过度表达,或者通过含有肿瘤抑制因子的人工circRNA的表达。在临床前研究中,最常见的方法是提供含有重复miRNA结合位点的circRNA,它可以作为致癌miRNA的ceRNAs。此外,circRNA所发挥的治疗作用并不局限于RNA元素,还可以是蛋白质。

鉴于大多数circRNA的表达水平非常低,并且可能是非功能性的, 未来的研究应更关注研究中circRNA的丰度。 此外,作者鼓励旨在 解决作用机制和病理生理作用的研究。 考虑到m6A修饰已被证明能增强某些circRNA的蛋白质吸附和翻译潜能, 研究circRNA转录后化学修饰的功能相关性也将很重要 。

尽管circRNAs在癌症中的作用机制和病理生理作用存在争议,但这些分子作为诊断、预后和预测性生物标记物仍具有特殊的前景。

目前circRNA表达谱仅在有限数量的癌症实体中得到全面分析,而 circRNA表达谱与驱动癌基因突变之间的关系 通常知之甚少。此外,由于技术挑战,缺乏 单细胞水平和空间分辨率的circRNA表达数据 。这些研究对于理解circRNA的功能以及推动未来生物标记物的发现和发展至关重要。

首发公号:国家基因库大数据平台

参考文献

Kristensen L S, Jakobsen T, Hager H, et al. The emerging roles of circRNAs in cancer and oncology[J]. Nature Reviews Clinical Oncology, 2021: 1-19.

肿瘤免疫治疗的介绍

癌症免疫疗法,是通过增强自身免疫功能以清除肿瘤细胞的技术。癌症免疫疗法可以分为四个主要类别:非特异性免疫增强剂、疫苗、过继疗法和免疫检查点抑制剂。

非特异性免疫增强剂

非特异性免疫增强剂并不专一性地针对肿瘤细胞,而是通过整体上调机体的免疫功能来获得对癌症更好的作用效果。作为最早的癌症免疫疗法,非特异性免疫增强剂早在上个世纪90年代便被应用于临床。最为常见的非特异性免疫增强剂包括白介素(Interleukins)和干扰素(Interferons)等。由于人体免疫系统扮演着识别“敌我”的功能,非特异性地上调其功能往往会造成对机体的误伤从而产生较为严重的副作用如流感样症状、皮疹、白细胞减少等,因此非特异性免疫增强剂的使用受到了局限,更多的情况下作为辅助用药与其他免疫疗法或化疗联合应用。

而癌症疫苗和过继疗法、免疫检查点抑制剂作为新兴癌症免疫疗法的代表,更为受到研究者与市场的关注。在这个领域内技术迭代日新月异,不断出现的参与者逐渐形成了群雄割据的局面,资本疯狂涌入,共同构筑起人类与癌症战场的最前线。

疫苗

目前经美国FDA(食品药品监督管理局)批准用于癌症治疗的疫苗共有四种,分别是用于预防宫颈癌的Gardasil与 Cervarix、用于预防肝癌的乙肝疫苗和用于治疗晚期前列腺癌的Provenge。

人乳头瘤病毒HPV被认为是90%以上的宫颈癌的诱因,其中高致病性的16、18、31、33、45、52、58七类亚型可通过接种九价HPV疫苗进行预防。同样地,在中国90%以上的原发性肝癌患者均为HBsAg阳性的乙肝患者,通过接种乙肝疫苗可大大降低罹患肝癌的概率。

与通过预防癌症相关病毒感染而“曲线救国”的预防性癌症疫苗不同,治疗性癌症疫苗Provenge是第一款真正意义上的癌症疫苗。这款疫苗通过分离患者的树突状细胞并在体外与特异性高表达于前列腺癌细胞的前列腺酸性磷酸酶PAP共同培养,使得树突状细胞“耳濡目染”地学会识别这一特异性抗原。在输回患者体内后,树突状细胞将PAP抗原处理并呈递给T细胞,后者则找到体内表达有PAP的前列腺癌细胞并进行扑灭。

除了常规的癌症疫苗外,有部分研究者也将溶瘤病毒归为癌症免疫疗法的一个分支。原本“无恶不作”的病毒经基因改造后能够特异性地感染肿瘤细胞,通过在细胞内大量复制杀伤肿瘤,这一过程中释放出的肿瘤细胞抗原则能够引起免疫反应来强化溶瘤病毒的治疗效果。溶瘤病毒应用上最大的障碍在于其本身也是免疫系统的目标之一,因此往往需要采用瘤内注射或联合免疫抑制剂使用。而在一些处于临床早期的溶瘤病毒产品中,已经开始尝试着采用静脉注射这一常规给药途径,希望能够进一步拓展溶瘤病毒的应用前景。

过继细胞疗法

1984年,Linda Taylor来到美国国家癌症研究院,寻求治疗她所罹患的晚期转移性恶性黑色素瘤的方法。癌症免疫学家Steven Rosenberg接待了她。在分离了一部分Taylor的淋巴细胞后,研究人员将大剂量的IL-2用于刺激淋巴细胞,并把得到的淋巴因子活化杀伤细胞(LAK cell)输回到她体内。Taylor的病情逐渐稳定并恢复。

近30年来,历史也见证了过继细胞疗法从第一代的LAK疗法,经细胞因子活化杀伤细胞CIK疗法、肿瘤浸润淋巴细胞TIL疗法、细胞毒性T淋巴细胞CTL疗法到第五代嵌合抗原受体T细胞CAR-T和肿瘤特异性T细胞受体基因工程细胞TCR-T的技术变革。Juno Therapeutics的CAR-T候选疗法JCAR015的I期临床结果显示,有91%的成年急性淋巴细胞白血病患者经JCAR015治疗后获得了完全缓解,尽管总生存期的延长并不显著,但所有人都对这种结合了基因工程和细胞疗法的崭新技术给予了厚望。

T淋巴细胞对肿瘤细胞的识别依赖于T细胞受体TCR与肿瘤细胞表面MHC-抗原复合物的结合,而许多肿瘤细胞在不断的“进化”过程中形成了通过降低MHC表达等手段逃避T细胞识别的能力。针对这一困境,研究者们一方面通过基因突变和筛选寄希望于找到与MHC-抗原复合物具有高亲和力的基因工程TCR,另一方面试图通过让T细胞表达能绕过MHC直接结合肿瘤细胞表面抗原的受体来将T细胞“锚定”在肿瘤细胞上。这两种不同的研究方向分别催生了TCR-T和CAR-T的诞生。

TCR-T技术作为传统过继细胞疗法技术的延伸,其识别肿瘤抗原的能力依赖于表达于抗原呈递细胞表面的主要组织相容性复合物(MHC),这在一定程度上限制了它在不同人群间的应用广度和整体效果。但TCR-T最大的优势在于其不但识别肿瘤细胞表面抗原,对于肿瘤细胞内的抗原同样能够通过MHC的提递而进行识别,这使得其针对的肿瘤类型相对于CAR-T要广得多。

第五代过继细胞疗法的光芒虽然耀目,但就目前而言它依然无法撼动手术、化疗和放疗在肿瘤治疗领域的统治地位。在临床试验中CAR-T同样暴露出了许多亟需改善的问题和症结,如不明原因的疾病复发、致命的细胞因子风暴等等。

单克隆抗体类免疫检查点(immune checkpoint inhibitor)抑制剂

抗程序性死亡蛋白1(programmed death 1, PD-1)抗体是目前研究最多,临床发展最快的一种免疫疗法。PD-1起作用在免疫反应的效应阶段,其表达于活化的T细胞,B细胞及髓系细胞,其有两个配体,即程序性死亡分子配体-1(programmed death ligand 1, PD-L1)和PD-L2。PD-L1/L2在抗原提呈细胞都表达,PD-L1在多种组织也有表达。PD-1与PD-L1的结合介导T细胞活化的共抑制信号,抑制T细胞的杀伤功能,对人体免疫应答起到负调节作用。华裔科学家陈列平实验室首先发现PD-L1在肿瘤组织高表达,而且调节肿瘤浸润CD8+ T细胞的功能。因此,以PD-1/PD-L1为靶点的免疫调节对抗肿瘤有重要的意义。?

PD-1/PD-L1抑制剂能够特异性地和肿瘤细胞上的PD-L1结合来抑制其表达,从而能够使功能受抑制的T细胞恢复对肿瘤细胞的识别功能,从而实现通过自身免疫系统达到抗癌作用。

近年来,已有多种PD-1/PD-L1单克隆抗体在肿瘤免疫治疗的临床研究迅速开展。目前PD-1抑制剂Pembrolizumab和Nivolumab已被FDA批准用于晚期黑色素瘤、非小细胞肺癌、霍奇金淋巴瘤和头颈鳞癌等,Nivolumab还被FDA批准可用于治疗肾癌和尿路上皮癌等。此外,PD-L1抑制剂Atezolizumab和Durvalumab等单克隆抗体也已进入多个III期临床研究中,覆盖非小细胞肺癌、黑色素瘤、膀胱癌等多个瘤种。

细胞毒性T淋巴细胞抗原4(cytotoxic T-lymphocyte antigen 4, CTLA-4)是表达于活化的T细胞表面的一种跨膜蛋白。CTLA-4作用于免疫反应的启动阶段,其激活能够抑制T细胞免疫应答的启动,从而导致活化的T细胞减少并阻止记忆性T细胞的生成。研究发现,肿瘤细胞能够激活CTLA-4,使活化的T细胞失去活性,从而实现了肿瘤自身的免疫逃逸(immune escape)。

数个临床前研究发现,阻断CTLA-4后能够恢复T细胞的活性并延长记忆性T细胞的存活时间,从而恢复身体对肿瘤细胞的免疫功能,使得肿瘤的控制率提高,据此研发了抗CTLA-4 的特异性单克隆抗体。?

目前两种CTLA-4抑制剂Ipilimumab已被FDA批准用于III期黑色素瘤的辅助治疗和晚期黑色素瘤的治疗, 而Ipilimumab和Tremelimumab在肾癌、前列腺癌、肺癌等的临床研究已广发开展。早期期临床研究结果显示两种单抗无论是单药还是联合IL-2、PD-1/PD-L1抑制剂或化疗均显示安全有效。

其它如增强T细胞第二信号从而促进肿瘤特异性T细胞活化和增殖的单抗类,如肿瘤坏死因子TNF受体家族的OX40和4-1BB单抗尚在研发中。

2014年末,Science杂志对2015年科技的重要突破做出了预测,联合免疫疗法也在其中。早在上个世纪人们就意识到,癌症远远不是源自正常细胞一个基因、一个蛋白的改变,联合疗法才是癌症治疗的关键。上海敦复医院是上海第一批开展肿瘤免疫治疗的医院,目前已经为2500人次提供了肿瘤免疫治疗,如果你有肿瘤免疫治疗需求,请联 系我 们>>

医药学发展的基石是生命科学,随着对肿瘤生成发展现象的研究不断深入和突破,疾病治疗手段将更加丰富多样。在不远的未来,针对高效低毒的新型肿瘤靶点的药物研发、细胞疗法的安全性和经济性改造、克服耐药性的联合用药方案以及以预防和早期发现为主的精准医疗将是癌症治疗领域最为引人关注的方向。而免疫治疗恰恰是最为有希望的关键点!

【综述2020肿瘤 IF=7.845】硫辛酸是肿瘤发生的多水平分子抑制剂

硫辛酸是肿瘤发生的多水平分子抑制剂

【期刊】 Biochimica et Biophysica Acta (BBA) - Reviews on Cancer

【DOI】10.1016/j.bbcan.2019.188317

【影响因子】7.845

我们讨论了天然抗氧化剂硫辛酸(LA)如何诱导细胞凋亡并抑制癌细胞的增殖,EMT,转移和干性。此外,由于其具有减少化疗诱导的副作用和化学抗性的能力,LA似乎是用于癌症治疗的有前途的化合物。

癌症、硫辛酸、细胞凋亡、增殖、转移、化学抵抗力

硫辛酸(LA)是一种天然抗氧化剂,存在于所有原核和真核细胞中。它是由包括人类在内的动植物能量合成的。在人类中,LA是参与能量代谢的几种线粒体多酶复合物(例如丙酮酸脱氢酶(PDG)和α-酮戊二酸脱氢酶(KGDG)复合物)的重要辅助因子。硫辛酸能够清除氧气并再生其他抗氧化剂,因此经常被用于治疗与氧化应激相关的疾病,例如糖尿病,动脉粥样硬化,肝脏和神经退行性疾病。除了其在治疗这些慢性疾病中的功效外,研究人员还证明了其在各种类型的癌症中的积极作用。

各种研究表明,LA的外源性给药会抑制几种癌症的增殖。众所周知,肿瘤增殖是由于不同的酪氨酸激酶受体(TKR),包括表皮生长因子受体(EGFR)的过表达,导致了诸如PI3K / Akt,ERK和mTOR等致癌信号通路的激活。在该后者的情况下,或有趣的是,这些增殖途径的下游效应是在LA治疗几种类型的癌症细胞的增殖[的限制有助于其抗肿瘤活性的癌症的抑制 1 , 2 ]。总之,LA通过靶向EGFR信号传导途径起着至关重要的抗增殖作用。受LA影响的其他TKR,如胰岛素样生长因子受体1(IGF1R)( 图1 ),还需要进一步的研究。而且,已经证明LA靶向一些与肿瘤发生有关的蛋白质酪氨酸磷酸酶。确实,在乳腺癌细胞中,LA被证明可以通过降低PTP1B和SHP2的活性来降低其活力,而PTP1B和SHP2常常在乳腺癌细胞中过表达,并且是抗癌治疗的潜在靶点[ 3 ]。此外,在许多类型的导致细胞周期停滞的癌症中,LA促进细胞周期蛋白依赖性激酶抑制剂p27 kip1和p21 Cip1的上调[ 图 4 ]( 图1 )。AMPK是能量水平的主要传感器,可保持能量稳态。已经描述了其通过其磷酸化的活化通过抑制作为下游Akt效应子的mTOR蛋白复合物来限制肿瘤进展。除其抑制作用外,LA还导致增强AMPK激活,然后增强对Akt途径的抑制作用,从而降低了癌细胞的增殖[ [5] , [6] , [7] , [8] ]。

明显地,通过Akt途径的激活来诱导茎直直,这继而导致GSK3的磷酸化和失活,从而导致β-catenin稳定并通过磷酸化激活Oct-4。这些事件在阻止中起着至关重要的作用。LA通过减少Akt的磷酸化来抑制Akt的活化,从而阻止了茎干过程。细胞增殖与生长通过ERK和PI3K / Akt途径的激活来控制。LA尤其通过阻止c-Myc的活化来阻止ERK的磷酸化,而c-Myc的活化是癌症发展过程中几个过程的核心。此外,LA抑制Akt的激活,从而导致mTORC1的抑制,从而诱导翻译过程,因此LA降低了细胞的增殖和生长。凋亡受蛋白质的两种亚型控制,即促凋亡或抗凋亡蛋白。Akt磷酸化可诱导抗凋亡蛋白(例如Mcl-1,bcl-x L)并减少促凋亡蛋白(例如Bim,Nova,Bax)。LA以三种不同的水平发挥作用:(i)抑制Akt途径,导致抗凋亡蛋白的阻遏和促凋亡蛋白的增加;(ii)通过产生ROS诱导促凋亡蛋白的转录, (iii)激活负调节Akt途径的AMPK蛋白。此外,LA阻碍了PI3K以及ATK或ERK途径上游的某些TKR(例如EGFR)的激活,从而增强了对这些途径的抑制作用。此外,LA通过抑制 NF-κB 抑制TNFα激活的下游致癌途径。信号传导是肿瘤发生的关键启动子。所有这些事件都有助于抑制增殖,生长和诱导凋亡。该EMT过程导致细胞迁移和侵袭的是由几种蛋白质(例如ZEB1)和酶(例如MMP)控制的。LA通过下调β1/β3-整联蛋白表达来抑制FAK活化。此作用可防止ERK激活,并降低MMP-9和-2的mRNA水平。此外,LA抑制Smad信号传导,该信号是转化生长因子β(TGFβ)超家族受体的主要信号转导子,对于调节生长和EMT至关重要。(绿色箭头和框显示激活,红色箭头和框显示抑制)。(要解释此图例中对颜色的引用,请参阅本文的网络版本。)

AMPK:AMP激活的蛋白激酶;Akt:蛋白激酶B,Bax:Bcl-2相关的X蛋白;Bcl-2:B细胞淋巴瘤2;c-Myc:细胞骨髓增生病;ERK:细胞外信号-调节激酶;FAK:粘着斑激酶;GSK3β:糖原合酶激酶3 beta;洛杉矶:硫辛酸;Mcl-1:髓样细胞白血病1;MMP:基质金属蛋白酶蛋白;mTORC1:雷帕霉素复合物1的哺乳动物靶标;Oct-4:与Octamer结合的转录因子4;PI3K:磷酸肌醇3-激酶,S6:核糖体蛋白S6;TGFβR:转化生长因子β受体;TKRs:酪氨酸激酶受体。

除了具有抗增殖作用外,LA还可以剂量依赖的方式诱导不同类型癌细胞的凋亡。先前的数据表明,LA能够通过调节抗凋亡蛋白与促凋亡蛋白之间的比例来产生活性氧,从而促进多种癌细胞系的凋亡。实际上,线粒体的抗凋亡蛋白Mcl-1的,bcl-2和BCL-X 大号,以下几种卵巢肺癌和乳腺癌细胞系[LA治疗被下调以浓度依赖性方式 9 ]。相反,促凋亡蛋白Bim和Noxa的表达响应于LA而被上调。所有这些事件都会导致细胞死亡[ 10 ]( 图1 )。在白血病和乳腺癌中,LA处理后caspase-3活性增加,Bax / bcl2比(凋亡指数)显着增加[ 11 ]。在肝癌癌细胞中进行的另一项研究还表明,LA通过激活caspase-9和caspase-3来触发内在的凋亡途径[ 9 ]。根据这些发现,先前在结肠癌中进行的研究表明,LA通过抑制NF-κB信号传导来稳定WT p53蛋白( 图1 )。已知WTp53是通过诱导促凋亡基因的转录从而触发内在凋亡而成为凋亡的激活剂。但是,D?rsam等。证明了LA可以独立于p53稳定引发大肠癌的细胞死亡[ 12 ]。此外,先前对肺癌细胞的研究表明,LA治疗通过凋亡诱导因子(AIF)介导的半胱天冬酶非依赖性机制激发了其他细胞死亡途径,导致坏死和自噬相关细胞死亡[ 13 ]。

转移级联反应是一个复杂的多步骤过程,第一个关键步骤是细胞通过细胞外屏障和基底膜的渗透进入细胞,随后是脉管系统浸润,远端器官的渗出和定植。这些事件受两个关键途径调节,即转化生长因子β(TGFβ)和粘着斑激酶(FAK)。一旦激活了这些途径,就会诱导上皮-间质转化(EMT)相关的转录因子(TF),例如波形蛋白,Slug,Twist和Snail。这些TF通过下调E-钙粘蛋白和触发几种EMT标记物的过表达来促进EMT。

在两种乳腺癌细胞系,即MDA-MB-231和4T1中,最近的一项研究表明,LA通过抑制TGFβ诱导的SMT,Snail,波形蛋白和Zeb1等EMT标志物来抑制细胞迁移[ 2 ]。在其他类型的癌症中,LA治疗后这些标志物的表达也降低了[ 14 ]( 图1 )。而且,已知Smad途径被TGFβ信号激活后参与EMT过程,但被LA抑制[ 1 ]。总的来说,这些结果表明,LA通过抑制EMT抑制了入侵和迁移( 图1)。 )。另外,在癌细胞侵袭期间,称为侵染足的小突起以整合素依赖性方式促进细胞粘附至细胞外基质(ECM)。已知这些细胞表面蛋白可激活FAK途径。由于β1-整联蛋白表达的下调,LA治疗损害了这些突起的形成,从而抑制了癌细胞的侵袭和迁移[ 15 ]( 图1 )。入侵也依赖于金属蛋白酶(MMP),因为这些关键酶(主要是MMP-2和MMP-9)降解IV型胶原蛋白,并在肿瘤细胞侵袭和恶性肿瘤中发挥关键作用[ 16 ],并且再次显示LA可以抑制侵袭通过剂量依赖性降低乳腺癌细胞株中MMP-2和MMP-9 mRNA的表达[ 图 16 ]( 图1 )。与这些发现一致,LA还通过增加E-钙粘蛋白和减少N-钙粘蛋白,波形蛋白和活化的β-连环蛋白来抑制EMT过程。

癌症干细胞(CSC)是稀有的永生细胞,由于其自??我更新和分化能力,能够产生构成肿瘤的多种细胞类型。该群体能够诱导细胞增殖和扩散。尽管针对肿瘤块的疗法取得了进展,但CSC可能仍不受影响,从而促进了癌症的复发和治疗药物的耐药性。通过激活Akt通路来维持CSC表型,这对于稳定CSC调节蛋白(例如Oct-4)很重要,该蛋白可促进Nanog的转录,Nanog是维持各种癌细胞干,侵袭性和化学抗性的关键蛋白。最近的一项研究表明,LA通过抑制Akt信号传导通路来负调控人类非小细胞肺癌衍生细胞的CSC样表型, 14 ]。这项研究证明了LA在抑制CSC表型中的作用,并增强了LA在克服CSC介导的化学耐药性,进展和转移方面的关键意义( 图1 )。

尽管常规疗法取得了进展,但耐药机制(包括DNA损伤和自由基的产生)导致继发性肿瘤的生长,仍然是发病率和死亡率的根本原因。几项研究表明,LA使癌细胞对化学治疗剂敏感。值得注意的是,LA通过抑制分别NF-κB信号传导和整合素β1/β3,[增加乳腺癌和肺癌细胞中的紫杉醇效率 17 , 18 ]( 图1 )。同样,最近的一项研究表明,与单药负载的SLN(DTX负载的SLN或ALA负载的SLN)相比,使用固体脂质纳米颗粒(DTX-ALA负载的SLN)同时负载硫辛酸和多西他赛会增加细胞凋亡。癌细胞[ 19 ]。另一项研究表明,LA增强了两种作用机理不同的结直肠癌中使用的两种抗癌药(5-氟尿嘧啶,替莫唑胺)的细胞毒性。同样,LA通过减少非小细胞肺癌细胞中生长因子受体的激活来克服吉非替尼耐药性[ 20 ]。由于这些研究,将LA与抗癌药物结合以提高其效率将是有趣的。除了在增强化学疗法的细胞毒性方面的潜在作用外,LA还通过保护患者免受神经病变,肠道损害和腹泻的影响,具有预防化学副作用的作用。在这种情况下,在顺铂给药之前用LA进行预处理可以通过恢复氧化还原系统克服顺铂引起的损害,例如肾毒性,神经毒性和耳毒性[ 21 ]。

因此,LA通过影响大多数与增殖,侵袭,迁移,EMT,干细胞和凋亡相关的信号通路的标志,从而在几种癌症模型中表现出抗肿瘤活性。迄今为止,其作用机理尚未完全阐明,需要进一步研究以增进我们对这些潜在抗癌作用的了解。另一个正在进行的挑战是证明其与化学治疗剂联合在体内的有效性。这些其他研究可能为设计组合式LA疗法提供关键数据,以提高其疗效并恢复癌细胞的化学敏感性。因此,LA可能是改善抗癌治疗的有前途的分子。

参考文献:略

本文地址:http://www.dadaojiayuan.com/jiankang/263957.html.

声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:douchuanxin@foxmail.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

上一篇:

下一篇:

相关文章