2016年10月27日讯 一项发表在国际学术期刊Scientific Reports上的最新研究介绍了一种治疗儿童尿道下裂的潜在新方法,目前治疗这种疾病的方法主要是通过手术进行组织移植实现尿道重建,但是这种方法可能导致多种并发症,有时需要进行多次手术。
尿道下裂是一种男性尿道开口位置异常的先天缺陷,据国外报道发病率可高达125--250名出生男婴中有1个尿道下裂。
在这项研究中,科学家们借助一种动物模型证实利用个体自身的骨髓干细胞构建移植组织再进行尿道重建是可行并且有效的。这些干细胞被接种到合成的支架上逐渐形成移植组织,这种支架具有无毒性,可生物降解以及能够进行拉伸的特性。构建的移植组织可以在多个生物学层面上帮助损伤组织进行再生修复。“使用来自骨髓的两种不同的干细胞群体,我们能够抑制炎症反应同时避免形成疤痕组织,”Arun Sharma博士这样说道。“我们还观察到进行了移植之后会形成新生血管,这对于组织愈合和生长是非常重要的。”
“这项研究最令人兴奋的发现之一就是使用个体自身的干细胞可以减少手术后的可见疤痕,这表明这些细胞确实能够促进手术的最终成功和治疗效果。”文章第一作者Joceline Liu这样说道。
利用骨髓来源的干细胞群体和支架材料进行尿道修复的新方法以Sharma早先关于膀胱组织修复的研究为基础。
“借助这种方法,患儿将不再需要承受目前治疗方法带来的并发症痛苦,”Sharma这样表示。“但是在将这种技术应用于儿童治疗之前,还需要在动物模型上进行更多研究,未来还要进行临床试验。这项研究成果为后续研究打下了一个基础。”
近些年来,干细胞凭借其高度的发育可塑性,引起了医学与生物学界的极大兴趣。也许在不久的将来,我们人类体内所有受损或功能退化的组织都可以通过干细胞移植来进行修复与替换。从20世纪70年代初开始的骨髓造血干细胞移植已经让无数恶性血液病患者的生命得以延续,但最接近全能性的胚胎干细胞的研究尚存在着伦理学和成瘤性等问题,其它成体干细胞的研究也还处于起步阶段,在真正应用到临床治疗前还需要进行大量的基础研究与临床前实验。
本书以2004年9月在伦敦帝国理工学院举办的“干细胞修复与再生专题研讨会”讲义为基础,内容涵盖了当今在基础干细胞生物学、干细胞操作以及干细胞治疗的临床应用等领域的研究热点。
全书共16章。第1章概述干/祖细胞生物学的基本观点与最新研究进展;第2章介绍不对称分裂原理在成体干细胞的鉴别与扩增方面的应用;第3章介绍造血干细胞的形成与定向分化的转录调控;第4章介绍出生后新血管形成过程中内皮祖细胞、生长因子和细胞外基质分别发挥的作用;第5章介绍干细胞的位点特异性重组基因工程改造;第6章从动力学角度介绍造血干细胞自我更新、分裂以及植入体内后发生的变化,同时概述了实验血液学和造血干细胞移植的发展历程;第7章介绍干细胞与组织工程已取得的成就和面临的挑战;第8章介绍人胚胎间充质干细胞的特性,以及在产前诊断和基因治疗等方面的应用;第9章介绍基因修饰间充质干细胞在再生治疗方面的应用;第10章介绍源于胚胎干细胞的心肌细胞的药理学特性表征;第11章介绍成体干细胞在心脏细胞替代治疗方面的应用;第12章介绍胰脏与肝脏的再生;第13章介绍肝外干细胞在肝脏再生与修复方面的应用;第14章概述胚胎干细胞诱导分化β胰岛细胞的研究历程;第15章概述干细胞移植临床应用前的审核步骤与标准以及主要应用领域;第16章介绍应用于移植后干细胞体内示踪的核磁共振成像技术与对比剂。
本书的内容以研究进展和存在的问题为主,没有对基础理论与概念做系统讲解,贴近干细胞研究领域的前沿,可供对干细胞领域有一定了解的基础生物学、分子生物学、发育生物学、生物医学工程、临床医学等相关专业的研究人员、教师、研究生和高年级学生参阅。
张晓鸥,博士生
(中国科学院过程工程研究所)
造血干细胞已经经过分化,只能进行多能分化,不能进行全能分化——故不能分化成神经细胞。
ps:
干细胞(Stem Cell)是一种未充分分化,尚不成熟的细胞,具有再生各种组织器官和人体的潜在功能,医学界称之为“万用细胞”。
干细胞是一类具有自我更新和分化潜能的细胞。它包括胚胎干细胞和成体干细胞。干细胞的发育受多种内在机制和微环境因素的影响。目前人类胚胎干细胞已可成功地在体外培养。最新研究发现,成体干细胞可以横向分化为其他类型的细胞和组织,为干细胞的广泛应用提供了基础。
在胚胎的发生发育中,单个受精卵可以分裂发育为多细胞的组织或器官。在成年动物中,正常的生理代谢或病理损伤也会引起组织或器官的修复再生。胚胎的分化形成和成年组织的再生是干细胞进一步分化的结果。胚胎干细胞是全能的,具有分化为几乎全部组织和器官的能力。而成年组织或器官内的干细胞一般认为具有组织特异性,只能分化成特定的细胞或组织。
然而,这个观点目前受到了挑战。
最新的研究表明,组织特异性干细胞同样具有分化成其他细胞或组织的潜能,这为干细胞的应用开创了更广泛的空间。
干细胞具有自我更新能力(Self-renewing),能够产生高度分化的功能细胞。干细胞按照生存阶段分为胚胎干细胞和成体干细胞 。
·1.1 胚胎干细胞
胚胎干细胞(Embryonic Stem cell, ES细胞)。
胚胎干细胞当受精卵分裂发育成囊胚时,内层细胞团(Inner Cell Mass)的细胞即为胚胎干细胞。胚胎干细胞具有全能性,可以自我更新并具有分化为体内所有组织的能力。早在1970年Martin Evans已从小鼠中分离出胚胎干细胞并在体外进行培养。而人的胚胎干细胞的体外培养直到最近才获得成功。
进一步说,胚胎干细胞(ES细胞)是一种高度未分化细胞。它具有发育的全能性,能分化出成体动物的所有组织和器官,包括生殖细胞。研究和利用ES细胞是当前生物工程领域的核心问题之一。ES细胞的研究可追溯到上世纪五十年代,由于畸胎瘤干细胞(EC细胞)的发现开始了ES细胞的生物学研究历程。
目前许多研究工作都是以小鼠ES细胞为研究对象展开的,如:德美医学小组在去年成功的向试验鼠体内移植了由ES细胞培养出的神经胶质细胞。此后,密苏里的研究人员通过鼠胚细胞移植技术,使瘫痪的猫恢复了部分肢体活动能力。随着ES细胞的研究日益深入,生命科学家对人类ES细胞的了解迈入了一个新的阶段。在98年末,两个研究小组成功的培养出人类ES细胞,保持了ES细胞分化为各种体细胞的全能性。这样就使科学家利用人类ES细胞治疗各种疾病成为可能。然而,人类ES 细胞的研究工作引起了全世界范围内的很大争议,出于社会伦理学方面的原因,有些国家甚至明令禁止进行人类ES细胞研究。无论从基础研究角度来讲还是从临床应用方面来看,人类ES细胞带给人类的益处远远大于在伦理方面可能造成的负面影响,因此要求展开人类ES细胞研究的呼声也一浪高似一浪。
·1.2 成体干细胞
成年动物的许多组织和器官,比如表皮和造血系统,具有修复和再生的能力。成体干细胞在其中起着关键的作用。在特定条件下,成体干细胞或者产生新的干细胞,或者按一定的程序分化,形成新的功能细胞,从而使组织和器官保持生长和衰退的动态平衡。过去认为成体干细胞主要包括上皮干细胞和造血干细胞。最近研究表明,以往认为不能再生的神经组织仍然包含神经干细胞,说明成体干细胞普遍存在,问题是如何寻找和分离各种组织特异性干细胞。成体干细胞经常位于特定的微环境中。微环境中的间质细胞能够产生一系列生长因子或配体,与干细胞相互作用,控制干细胞的更新和分化。
·1.3 造血干细胞
造血干细胞是体内各种血细胞的唯一来源,它主要存在于骨髓、外周血、脐带血中。今年年初,协和医大血液学研究所的庞文新又在肌肉组织中发现了具有造血潜能的干细胞。造血干细胞的移植是治疗血液系统疾病、先天性遗传疾病以及多发性和转移性恶性肿瘤疾病的最有效方法。
在临床治疗中,造血干细胞应用较早,在20世纪五十年代,临床上就开始应用骨髓移植(BMT)方法来治疗血液系统疾病。到八十年代末,外周血干细胞移植(PBSCT)技术逐渐推广开来,绝大多数为自体外周血干细胞移植(APBSCT),在提高治疗有效率和缩短疗程方面优于常规治疗,且效果令人满意。与两者相比,脐血干细胞移植的长处在于无来源的限制,对HLA配型要求不高,不易受病毒或肿瘤的污染。
在今年初,东北地区首例脐血干细胞移植成功,又为中国造血干细胞移植技术注入新的活力。随着脐血干细胞移植技术的不断完善,它可能会代替目前APBSCT的地位,为全世界更多的血液病及恶性肿瘤的患者带来福音
·1.4 神经干细胞
神经干细胞关于神经干细胞研究起步较晚,由于分离神经干细胞所需的胎儿脑组织较难取材,加之胚胎细胞研究的争议尚未平息,神经干细胞的研究仍处于初级阶段。理论上讲,任何一种中枢神经系统疾病都可归结为神经干细胞功能的紊乱。脑和脊髓由于血脑屏障的存在使之在干细胞移植到中枢神经系统后不会产生免疫排斥反应,如:给帕金森氏综合症患者的脑内移植含有多巴胺生成细胞的神经干细胞,可治愈部分患者症状。除此之外,神经干细胞的功能还可延伸到药物检测方面,对判断药物有效性、毒性有一定的作用。 实际上,到目前为止,人们对干细胞的了解仍存在许多盲区。2000年年初美国研究人员无意中发现在胰腺中存有干细胞;加拿大研究人员在人、鼠、牛的视网膜中发现了始终处于“休眠状态的干细胞” ;有些科学家证实骨髓干细胞可发育成肝细胞,脑干细胞可发育成血细胞。
随着干细胞研究领域向深度和广度不断扩展,人们对干细胞的了解也将更加全面。21世纪是生命科学的时代,也是为人类的健康长寿创造世界奇迹的时代,干细胞的应用将有广阔前景。
·1.5肌肉干细胞(muscle stem cell)
可发育分化为成肌细胞(myoblasts),后者可互相融合成为多核的肌纤维,形成骨骼肌最基本的结构。
造血干细胞(hemopoietic stem cell)又称多能干细胞。是存在于造血组织中的一群原始造血细胞。也可以说它是一切血细胞(其中大多数是免疫细胞)的原始细胞。由造血干细胞定向分化、增殖为不同的血细胞系,并进一步生成血细胞。人类造血干细胞首先出现于胚龄第2~3周的卵黄囊,在胚胎早期(第2~3月)迁至肝、脾,第5个月又从肝、脾迁至骨髓。在胚胎末期一直到出生后,骨髓成为造血干细胞的主要来源。具有多潜能性,即具有自身复制和分化两种功能。在胚胎和迅速再生的骨髓中,造血干细胞多处于增殖周期之中;而在正常骨髓中,则多数处于静止期(G0期),当机体需要时,其中一部分分化成熟,另一部分进行分化增殖,以维持造血干细胞的数量相对稳定。造血干细胞进一步分化发育成不同血细胞系的定向干细胞。定向干细胞多数处于增殖周期之中,并进一步分化为各系统的血细胞系,如红细胞系、粒细胞系、单核-吞噬细胞系、巨核细胞系以及淋巴细胞系。由造血干细胞分化出来的淋巴细胞有两个发育途径,一个受胸腺的作用,在胸腺素的催化下分化成熟为胸腺依赖性淋巴细胞,即T细胞;另一个不受胸腺,而受腔上囊(鸟类)或类囊器官(哺乳动物)的影响,分化成熟为囊依赖性淋巴细胞或骨髓依赖性淋巴细胞,即B细胞。并分别由T、B细胞引起细胞免疫及体液免疫。如机体内造血干细胞缺陷,则可引起严重的免疫缺陷病。
神经干细胞(neural stem cell,NSCs)是一类具有分裂潜能和自我更新能力的母细胞,它可以通过不对等的分裂方式产生神经组织的各类细胞。需要强调的是,在脑脊髓等所有神经组织中,不同的神经干细胞类型产生的子代细胞种类不同,分布也不同。
? ? 干细胞修复再生的能力一直收到医学界包括社会的关注,因为其能将损坏的人体细胞,包括一些被癌细胞损坏的组织进行修复和再生。基于干细胞的修复和再生疗法是当今生物技术与医学行业最热门的领域之一。通过半个世纪的发掘,干细胞的潜能已经大部分被证实,并成功应用到临床实验。
? ? 尽管自然界中已有多种动物提前掌握再生能力,能够不治自愈,但现阶段这是人类所不能比拟的。今天,我们受伤后,受损组织仍会产生疤痕,甚至影响身体机能,但是以干细胞为核心的再生医学正在向这一事实发起挑战。
? ? 再生能力的探究
? ? 近日,《Nature》子刊一项研究——利用动物内源干细胞修复组织,剖析了组织再生的机理与研发前景。以下为此项研究部分内容:
? ? 众所周知,蝾螈这种两栖动物的再生能力是十分惊人的,它们不但能再生出尾巴,甚至还能再生出四肢和心脏。更为惊人的是,蝾螈的这种再生能力是在整个生命周期中都能得到保持的。
? ? 研究表明,蝾螈等动物模型的组织再生涉及到多个复杂步骤,并且有多种不同来源的细胞参与。以四肢的再生为例:
干细胞修复再生的能力
? ? 与两栖类动物不同,哺乳动物的再生能力受到一定限制。总体来看,只有处于发育早期和出生后不久的哺乳动物才具有较佳的再生能力。相反,成年动物组织的再生能力十分有限,会在伤口愈合的过程中形成疤痕,且带来异常的组织重建。
? ? 干细胞与组织再生
? ? 在组织修复和再生过程中,干细胞起到了重要的作用。经过增殖和分化后,干细胞可以发育成具有特定功能的成熟细胞系,在组织再生中扮演关键角色。
? ? 在人体内,间充质干细胞是得到最多研究的干细胞之一。相比之下,这类干细胞具有分化成多类细胞的潜力,包括骨细胞、软骨细胞、肌肉细胞、以及脂肪细胞等等。
? ? 根据来源不同,间充质干细胞大致划分为以下几种:
? ? ■来源于骨髓的干细胞具有移动到身体远端的能力,且能与免疫系统相互作用,并生产具有生物活性的分子,以创造一个适合组织修复的微环境。因此,它在医疗上具有一定的潜力。
? ? 但是,随着年龄增长,体内积存的炎性细胞因子及微环境都会影响骨髓间充质干细胞的质量;另外,其破坏性的采集方式也会让临床应用更具挑战性。
? ? ■研究发现,在新生儿的脐带中含有大量脐带间充质干细胞,具有很强的多向组织分化潜能,兼具器官损伤修复,造血功能恢复和免疫调节等多重作用。与骨髓间充质相比,因其具有“零”免疫排斥的特性,已被临床广泛应用于人体多系统疑难疾病的治疗。
? ? ■脂肪也是间充质干细胞的主要来源。对人类来说,脂肪组织里有着丰富的专能干细胞,它们能在体内或体外环境下进行分化,可产生多种细胞类型。
? ? 目前,国内利用来源于脂肪的干细胞,已成功治疗了一名颅骨多处损伤的患者,但是更多情况下,仍以医美抗衰领域应用居多,如丰胸、塑形等。
? ? 再生医学的今天和明天
? ? 2018年1月12日,在南京鼓楼医院,全球首例通过再生医学技术治疗卵巢早衰获得成功,患者已诞下一健康男婴。这标志着我国在卵巢再生临床研究中取得了突破性进展。
? ? 2018年5月30日,英国纽卡斯尔大学一项研究:使用3D打印人类角膜,能有效帮助失明患者再见光明。目前研究人员仍在不断试验,努力确保角膜移植后不会发生排斥反应,可以正常工作。
? ? 未来,随着干细胞、组织工程等研究的不断深入,必将激励更多有意义的探索,开展更多跨领域的研究尝试,拉近机体“满血复活”的距离。
中瑞恩次方干细胞修复再生
? ? 我们期待,有朝一日能真正实现人体的组织再生,让由于先天性残缺、创伤、或是肿瘤引起的组织损伤得到修复。今天,我们需要做的就是支持并期待这一天的尽快到来!
胚胎干细胞(Embrtibuc stem cell)的发育等级较高,是多能干细胞(Pluripotent stem cell),而成体干细胞的发育等级较低,是单能干细胞。干细胞是一类具有自我更新和分化潜能的细胞。它包括胚胎干细胞和成体干细胞。干细胞的发育受多种内在机制和微环境因素的影响。目前人类胚胎干细胞已可成功地在体外培养。最新研究发现,成体干细胞可以横向分化为其他类型的细胞和组织,为干细胞的广泛应用提供了基础。
在胚胎的发生发育中,单个受精卵可以分裂发育为多细胞的组织或器官。在成年动物中,正常的生理代谢或病理损伤也会引起组织或器官的修复再生。胚胎的分化形成和成年组织的再生是干细胞进一步分化的结果。胚胎干细胞是全能的,具有分化为几乎全部组织和器官的能力。而成年组织或器官内的干细胞一般认为具有组织特异性,只能分化成特定的细胞或组织。
然而,这个观点目前受到了挑战。
最新的研究表明,组织特异性干细胞同样具有分化成其他细胞或组织的潜能,这为干细胞的应用开创了更广泛的空间。
干细胞具有自我更新能力(Self-renewing),能够产生高度分化的功能细胞。干细胞按照生存阶段分为胚胎干细胞和成体干细胞 。
·1.1 胚胎干细胞
胚胎干细胞(Embryonic Stem cell, ES细胞)。
胚胎干细胞当受精卵分裂发育成囊胚时,内层细胞团(Inner Cell Mass)的细胞即为胚胎干细胞。胚胎干细胞具有全能性,可以自我更新并具有分化为体内所有组织的能力。早在1970年Martin Evans已从小鼠中分离出胚胎干细胞并在体外进行培养。而人的胚胎干细胞的体外培养直到最近才获得成功。
进一步说,胚胎干细胞(ES细胞)是一种高度未分化细胞。它具有发育的全能性,能分化出成体动物的所有组织和器官,包括生殖细胞。研究和利用ES细胞是当前生物工程领域的核心问题之一。ES细胞的研究可追溯到上世纪五十年代,由于畸胎瘤干细胞(EC细胞)的发现开始了ES细胞的生物学研究历程。
目前许多研究工作都是以小鼠ES细胞为研究对象展开的,如:德美医学小组在去年成功的向试验鼠体内移植了由ES细胞培养出的神经胶质细胞。此后,密苏里的研究人员通过鼠胚细胞移植技术,使瘫痪的猫恢复了部分肢体活动能力。随着ES细胞的研究日益深入,生命科学家对人类ES细胞的了解迈入了一个新的阶段。在98年末,两个研究小组成功的培养出人类ES细胞,保持了ES细胞分化为各种体细胞的全能性。这样就使科学家利用人类ES细胞治疗各种疾病成为可能。然而,人类ES 细胞的研究工作引起了全世界范围内的很大争议,出于社会伦理学方面的原因,有些国家甚至明令禁止进行人类ES细胞研究。无论从基础研究角度来讲还是从临床应用方面来看,人类ES细胞带给人类的益处远远大于在伦理方面可能造成的负面影响,因此要求展开人类ES细胞研究的呼声也一浪高似一浪。
·1.2 成体干细胞
成年动物的许多组织和器官,比如表皮和造血系统,具有修复和再生的能力。成体干细胞在其中起着关键的作用。在特定条件下,成体干细胞或者产生新的干细胞,或者按一定的程序分化,形成新的功能细胞,从而使组织和器官保持生长和衰退的动态平衡。过去认为成体干细胞主要包括上皮干细胞和造血干细胞。最近研究表明,以往认为不能再生的神经组织仍然包含神经干细胞,说明成体干细胞普遍存在,问题是如何寻找和分离各种组织特异性干细胞。成体干细胞经常位于特定的微环境中。微环境中的间质细胞能够产生一系列生长因子或配体,与干细胞相互作用,控制干细胞的更新和分化。
·1.3 造血干细胞
造血干细胞是体内各种血细胞的唯一来源,它主要存在于骨髓、外周血、脐带血中。今年年初,协和医大血液学研究所的庞文新又在肌肉组织中发现了具有造血潜能的干细胞。造血干细胞的移植是治疗血液系统疾病、先天性遗传疾病以及多发性和转移性恶性肿瘤疾病的最有效方法。
在临床治疗中,造血干细胞应用较早,在20世纪五十年代,临床上就开始应用骨髓移植(BMT)方法来治疗血液系统疾病。到八十年代末,外周血干细胞移植(PBSCT)技术逐渐推广开来,绝大多数为自体外周血干细胞移植(APBSCT),在提高治疗有效率和缩短疗程方面优于常规治疗,且效果令人满意。与两者相比,脐血干细胞移植的长处在于无来源的限制,对HLA配型要求不高,不易受病毒或肿瘤的污染。
在今年初,东北地区首例脐血干细胞移植成功,又为中国造血干细胞移植技术注入新的活力。随着脐血干细胞移植技术的不断完善,它可能会代替目前APBSCT的地位,为全世界更多的血液病及恶性肿瘤的患者带来福音
·1.4 神经干细胞
神经干细胞关于神经干细胞研究起步较晚,由于分离神经干细胞所需的胎儿脑组织较难取材,加之胚胎细胞研究的争议尚未平息,神经干细胞的研究仍处于初级阶段。理论上讲,任何一种中枢神经系统疾病都可归结为神经干细胞功能的紊乱。脑和脊髓由于血脑屏障的存在使之在干细胞移植到中枢神经系统后不会产生免疫排斥反应,如:给帕金森氏综合症患者的脑内移植含有多巴胺生成细胞的神经干细胞,可治愈部分患者症状。除此之外,神经干细胞的功能还可延伸到药物检测方面,对判断药物有效性、毒性有一定的作用。 实际上,到目前为止,人们对干细胞的了解仍存在许多盲区。2000年年初美国研究人员无意中发现在胰腺中存有干细胞;加拿大研究人员在人、鼠、牛的视网膜中发现了始终处于“休眠状态的干细胞” ;有些科学家证实骨髓干细胞可发育成肝细胞,脑干细胞可发育成血细胞。
随着干细胞研究领域向深度和广度不断扩展,人们对干细胞的了解也将更加全面。21世纪是生命科学的时代,也是为人类的健康长寿创造世界奇迹的时代,干细胞的应用将有广阔前景。
·1.5肌肉干细胞(muscle stem cell)
可发育分化为成肌细胞(myoblasts),后者可互相融合成为多核的肌纤维,形成骨骼肌最基本的结构。
[编辑本段]2.【基础应用】
干细胞的调控是指给出适当的因子条件,对干细胞的增值和分化进行调控,使之向指定的方向发展。
·2.1 内源性调控
干细胞自身有许多调控因子可对外界信号起反应从而调节其增殖和分化,包括调节细胞不对称分裂的蛋白,控制基因表达的核因子等。另外,干细胞在终末分化之前所进行的分裂次数也受到细胞内调控因子的制约。
(1)细胞内蛋白对干细胞分裂的调控
干细胞分裂可能产生新的干细胞或分化的功能细胞。这种分化的不对称是由于细胞本身成分的不均等分配和周围环境的作用造成的。细胞的结构蛋白,特别是细胞骨架成分对细胞的发育非常重要。如在果蝇卵巢中,调控干细胞不对称分裂的是一种称为收缩体的细胞器,包含有许多调节蛋白,如膜收缩蛋白和细胞周期素A。收缩体与纺锤体的结合决定了干细胞分裂的部位,从而把维持干细胞性状所必需的成分保留在子代干细胞中。
(2)转录因子的调控
在脊椎动物中,转录因子对干细胞分化的调节非常重要。比如在胚胎干细胞的发生中,转录因子Oct4是必需的。Oct4是一种哺乳动物早期胚胎细胞表达的转录因子,它诱导表达的靶基因产物是FGF-4等生长因子,能够通过生长因子的旁分泌作用调节干细胞以及周围滋养层的进一步分化。Oct4缺失突变的胚胎只能发育到囊胚期,其内部细胞不能发育成内层细胞团 [1]。另外白血病抑制因子(LIF)对培养的小鼠ES细胞的自我更新有促进作用,而对人的成体干细胞无作用,说明不同种属间的转录调控是不完全一致的。又如Tcf/Lef转录因子家族对上皮干细胞的分化非常重要。Tcf/Lef是Wnt信号通路的中间介质,当与β-Catenin形成转录复合物后,促使角质细胞转化为多能状态并分化为毛囊。
·2.2 外源性调控
除内源性调控外,干细胞的分化还可受到其周围组织及细胞外基质等外源性因素的影响。
(1)分泌因子
间质细胞能够分泌许多因子,维持干细胞的增殖,分化和存活。有两类因子在不同组织甚至不同种属中都发挥重要作用,它们是TGFβ家族和Wnt信号通路。比如TGF家族中至少有两个成员能够调节神经嵴干细胞的分化。最近研究发现,胶质细胞衍生的神经营养因子(GDNF)不仅能够促进多种神经元的存活和分化,还对精原细胞的再生和分化有决定作用。GDNF缺失的小鼠表现为干细胞数量的减少,而GDNF的过度表达导致未分化的精原细胞的累积[3]。Wnts的作用机制是通过阻止β-Catenin分解从而激活Tcf/Lef介导的转录,促进干细胞的分化。比如在线虫卵裂球的分裂中,邻近细胞诱导的Wnt信号通路能够控制纺锤体的起始和内胚层的分化。
(2)膜蛋白介导的细胞间的相互作用
有些信号是通过细胞-细胞的直接接触起作用的。β-Catenin就是一种介导细胞粘附连接的结构成分。除此之外,穿膜蛋白Notch及其配体Delta或Jagged也对干细胞分化有重要影响。在果蝇的感觉器官前体细胞,脊椎动物的胚胎及成年组织包括视网膜神经上皮、骨骼肌和血液系统中,Notch信号都起着非常重要的作用。当Notch与其配体结合时,干细胞进行非分化性增殖;当Notch活性被抑制时,干细胞进入分化程序,发育为功能细胞[4]。
(3)整合素(Integrin)与细胞外基质
整合素家族是介导干细胞与细胞外基质粘附的最主要的分子。整合素与其配体的相互作用为干细胞的非分化增殖提供了适当的微环境。比如当β1整合素丧失功能时,上皮干细胞逃脱了微环境的制约,分化成角质细胞。此外细胞外基质通过调节β1整合素的表达和激活,从而影响干细胞的分布和分化方向。
·2.3 干细胞的可塑性
越来越多的证据表明,当成体干细胞被移植入受体中,它们表现出很强的可塑性。通常情况下,供体的干细胞在受体中分化为与其组织来源一致的细胞。而在某些情况下干细胞的分化并不遵循这种规律。1999年Goodell等人分离出小鼠的肌肉干细胞,体外培养5天后,与少量的骨髓间质细胞一起移植入接受致死量辐射的小鼠中,结果发现肌肉干细胞会分化为各种血细胞系。这种现象被称为干细胞的横向分化(trans-differentiation)[5]。关于横向分化的调控机制目前还不清楚。大多数观点认为干细胞的分化与微环境密切相关。可能的机制是,干细胞进入新的微环境后,对分化信号的反应受到周围正在进行分化的细胞的影响,从而对新的微环境中的调节信号做出反应。
克隆猪、克隆羊,其技术的机制原理和干细胞是一致的。
[编辑本段]3.【种类划分】
干细胞按能力可以分为以下四类:
1.全能干细胞
由卵和精细胞的融合产生受精卵。而受精卵在形成胚胎过程中四细胞期之前任一细胞皆是全能干细胞。具有发展成独立个体的能力。也就是说能发展成一个个体的细胞就称为全能干细胞。
2.万能干细胞
是全能干细胞的后裔,无法发育成一个个体,但具有可以发育成多种组织的能力的细胞。
3.多能干细胞
只能分化成特定组织或器官等特定族群的细胞(例如血细胞,包括红血细胞、白血细胞和血小板)。
4.专一性干细胞
只能产生一种细胞类型;但是,具有自更新属性,将其与非干细胞区分开。
[编辑本段]4.【研究情况】
·干细胞研究的历史情况
干细胞的研究被认为开始于1960年代,在加拿大科学家恩尼斯特·莫科洛克和詹姆士·堤尔的研究之后。
1959年,美国首次报道了通过体外受精(IVF)动物。
60年代,几个近亲种系的小鼠睾丸畸胎瘤的研究表明其来源于胚胎生殖细胞(embryonic germ cells, EG细胞),此工作确立了胚胎癌细胞(embryonic carcinoma cells, EC细胞)是一种干细胞。
1968年,Edwards 和Bavister 在体外获得了第一个人卵子。
70年代,EC细胞注入小鼠胚泡产生杂合小鼠。培养的SC细胞作为胚胎发育的模型,虽然其染色体的数目属于异常。
1978年,第一个试管婴儿,Louise Brown 在英国诞生。
1981年,Evan, Kaufman 和Martin从小鼠胚泡内细胞群分离出小鼠ES细胞。他们建立了小鼠ES细胞体外培养条件。由这些细胞产生的细胞系有正常的二倍型,像原生殖细胞一样产生三个胚层的衍生物。将ES细胞注入上鼠,能诱导形成畸胎瘤。
1984—1988年,Anderews 等人从人睾丸畸胎瘤细胞系Tera-2中产生出多能的、可鉴定的(克隆化的)细胞,称之为胚胎癌细胞(embryonic carcinoma cells, EC细胞)。克隆的人EC细胞在视黄酸的作用下分化形成神经元样细胞和其他类型的细胞。
1989年,Pera 等分离了一个人EC细胞系,此细胞系能产生出三个胚层的组织。这些细胞是非整倍体的(比正常细胞染色体多或少),他们在体外的分化潜能是有限的。
1994年,通过体外授精和病人捐献的人胚泡处于2-原核期。胚泡内细胞群在培养中得以保存其周边有滋养层细胞聚集 ,ES样细胞位于中央。
1998年美国有两个小组分别培养出了人的多能( pluripotent )干细胞: James A. Thomson在 Wisconsin大学领导的研究小组从人胚胎组织中培养出了干细胞株。他们使用的方法是:人卵体外受精后,将胚胎培育到囊胚阶段,提取 inner cell mass细胞,建立细胞株。经测试这些细胞株的细胞表面 marker 和酶活性,证实他们就是全能干细胞。用这种方法,每个胚胎可取得15-20干细胞用于培养。 John D. Gearhart在 Johns Hopkins大学领导的另一个研究小组也从人胚胎组织中建立了干细胞株。他们的方法是:从受精后5-9周人工流产的胚胎中提取生殖母细胞( primordial germ cell )。由此培养的细胞株,证实具有全能干细胞的特征。
2000年,由Pera、 Trounson 和 Bongso 领导的新加坡和澳大利亚科学家从治疗不育症的夫妇捐赠的胚泡内细胞群中分离得到人ES细胞,这些细胞体外增殖,保持正常的核型,自发分化形成来源于三个胚层的体细胞系。将其注入免疫缺陷小鼠错开内产生畸胎瘤。
2003,建立了人类皮肤细胞与兔子卵细胞种间融合的方法,为人胚胎干细胞研究提供了新的途径。
2004年,Massachusetts Advanced Cell Technology 报道克隆小鼠的干细胞可以通过形成细小血管的心肌细胞修复心衰小鼠的心肌损伤。这种克隆细胞比来源于骨髓的成体干细胞修复作用更快、更有效,可以取代40%的瘢痕组织和恢复心肌功能。这是首次显示克隆干细胞在活体动物体内修复受损组织。
·干细胞研究的意义
分化后的细胞,往往由于高度分化而完全丧失了再分化的能力,这样的细胞最终将衰老和死亡。然而,动物体在发育的过程中,体内却始终保留了一部分未分化的细胞,这就是干细胞。干细胞又叫做起源细胞、万用细胞,是一类具有自我更新和分化潜能的细胞。可以这样说,动物体就是通过干细胞的分裂来实现细胞的更新,从而保证动物体持续生长发育的。
干细胞根据其分化潜能的大小,可以分为两类:全能干细胞和组织干细胞。前者可以分化、发育成完整的动物个体,后者则是一种或多种组织器官的起源细胞。人的胚胎干细胞可以发育成完整的人,所以属于全能干细胞。
本文地址:http://www.dadaojiayuan.com/jiankang/285990.html.
声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:douchuanxin@foxmail.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!
上一篇: 近年来关于线粒体疾病的突破性进展
下一篇: 酒精湿巾会影响白带结果吗