登录
首页 >> 健康生活

Cancer,Res:MicroRNA或可特异性地杀死携带常见突变的癌细胞

佚名 2024-05-30 04:32:37

Cancer,Res:MicroRNA或可特异性地杀死携带常见突变的癌细胞

2016年10月07日讯 在所有的人类癌症中,大约有20%的癌症中都是KRAS基因发生突变,KRAS突变的癌症非常难以治疗,这类癌症患者的生存率较差而且容易对化疗产生耐受性;近日,来自加州大学圣地亚哥医学院和穆尔斯癌症中心的研究人员利用microRNAs分子系统性地抑制了成千上万个其它基因,从而发现了对癌细胞有特殊致死效应的组合,当然这些癌细胞都是由KRAS基因驱动引发的;相关研究刊登于国际杂志Cancer Research上,该研究为深入解析KRAS驱动的癌症提供了新的研究线索,也为开发新型的抗癌策略提供了潜在的靶点。

研究者Tariq Rana博士指出,近10年以来科学家们不断尝试去直接抑制KRAS的活性,但他们并没有发现能够利用小分子药物靶向作用的蛋白结合口袋(binding pockets),如今研究者并不去尝试如何抑制KRAS本身的活性,他们开发了一种方法来寻找其它分子,一旦这些分子被抑制后,只要KRAS突变就会对突变的癌变细胞产生致死性的效应。

文章中,研究者Rana和其同事利用microRNAs进行了相关研究,MicroRNAs分子并不会编码蛋白,相反其能够结合编码蛋白质的信使RNAs,从而抑制信使RNA的翻译并且促进其快速降解,正常细胞能够利用microRNAs来帮助控制不同时间段的基因的表达,而microRNAs在癌细胞中往往并不活跃。

研究者创建了含有超过一千个人类microRNA模仿体的文库,每一种microRNA模仿体都有着不同的序列并且能够同不同的信使RNA靶点相结合,首先,研究者检测了实验室中培养的结直肠细胞中的microRNA,其中一半细胞都含有KRAS突变,而这些突变使得细胞中的蛋白质变得异常活跃,就好像在很多癌症中发现的一样;另外一半细胞则含有正常的KRAS基因;随后研究者在一组含有和不含有KRAS突变的肺癌细胞系中检测了仅会杀死KRAS突变细胞的microRNA的序列。

随后研究人员在所有的结直肠癌和肺癌细胞中发现了一种特殊的microRNA-miR-1298,其能够有效地抑制KRAS依赖性细胞的生长,miR-1298能够抑制癌细胞中两种蛋白质的活性,即FAK和LAMB3,当研究者沉默这两种蛋白中任何一种的表达时,他们都能发现和添加miR-1298一样的效应,miR-1298能够阻断KRAS驱动的癌细胞的生长。

在人类的肺癌组织样本中,Rana和其同事发现LAMB3蛋白的较高水平和KRAS突变患者较差的生存率直接相关,他们还观察了259名肺癌患者的相关研究数据,这些患者机体中的KRAS状态和生存结果是已知的;在这些患者中,143名患者KRAS阳性,116名患者KRAS阴性;大约10年后,机体中LAMB3水平较高的KRAS阳性患者的存活率大约为20%,而LAMB3水平较低的KRAS阳性患者的存活率大约为60%。

最后研究者表示,临床研究结果表明,LAMB3或许可以作为一种预后的生物标志物,同时LAMB3也能够作为KRAS驱动的癌症治疗的一种潜在疗法靶点,此外,研究者还指出,miRNAs能够作为重要的工具来帮助科学家们探索复杂的生物过程,帮助鉴别一些新型的治疗靶点,并且开发出潜在的基于RNA的新型治疗手段。

Broadening horizons: the role of ferroptosis in cancer(上)

本文是一篇综述,选自nature? review

摘要:调节细胞死亡过程的发现促进了癌症治疗的进展。在过去的十年中,铁死亡,一种由过度脂质过氧化驱动的铁依赖形式的调节性细胞死亡,与各种类型肿瘤的发展和治疗反应有关。实验试剂(如erastin和RSL3)、批准的药物(如索拉非尼、柳氮磺胺吡啶、他汀类和青蒿素)、电离辐射和细胞因子(如IFNγ和TGFβ1)可诱导铁死亡和抑制肿瘤生长。然而,铁死亡性损伤可以在肿瘤微环境中引发炎症相关的免疫抑制,从而促进肿瘤生长。铁死亡对肿瘤生物学的影响程度尚不清楚,尽管一些研究发现了癌症相关基因(如RAS和TP53)突变、编码参与应激反应途径(如NFE2L2信号传导、自噬和缺氧)的蛋白质的基因突变、上皮-间充质转化与激活铁死亡的治疗反应之间的重要相关性。在这里,我们介绍了铁死亡的关键分子机制,描述了铁死亡和肿瘤相关信号通路之间的相互作用,并讨论了铁死亡在全身治疗、放射治疗和免疫治疗中的潜在应用。

大多数癌症治疗策略旨在选择性地消除癌细胞,而不伤害非恶性细胞。调节性细胞死亡(RCD)过程的不同致死子程序不同地影响肿瘤进展和对治疗的反应。与意外细胞死亡相比,RCD由特定的信号转导途径控制,这些途径可以通过药理学或遗传干预来调节。最广泛研究的RCD类型是细胞凋亡、焦亡、坏死和铁死亡,每一种都有独特的分子机制。死亡受体和线粒体途径是凋亡激活的两种最常见的机制,一个称为胱天蛋白酶的细胞内蛋白酶家族负责这些形式的RCD的效应期。焦亡也是一个半胱天冬酶依赖的过程,其效应期需要半胱天冬酶1或半胱天冬酶11介导的gasdermin D的裂解来释放其N端结构域,从而可以寡聚化并在质膜中形成孔。坏死的发生没有半胱天冬酶的激活,而是涉及其他效应分子,如假激酶MLKL,由RIPK3介导的磷酸化激活。

铁死亡这个术语是在2012年提出的,指的是一种由无限制的脂质过氧化和随后的质膜破裂引起的铁依赖性RCD。铁死亡可通过外在或内在途径诱发。外源途径是通过抑制细胞膜转运蛋白如胱氨酸/谷氨酸转运蛋白(也称为系统xc)或通过激活铁转运蛋白5-羟色胺转运蛋白和乳转铁蛋白来启动的。内在途径通过阻断细胞内抗氧化酶(如谷胱甘肽过氧化物酶GPX4)而被激活。尽管这一过程不涉及胱天蛋白酶、MLKL或gasdermin D的活性, 但铁死亡的效应分子仍有待鉴定 。值得注意的是,氧化损伤,一种由谷氨酸介导的神经细胞xc系统抑制引起的氧化损伤,其分子机制与铁死亡相似。

细胞凋亡在过去的30年里得到了广泛的研究;然而,肿瘤学中以凋亡调节因子(如来自半胱天冬酶或BCL-2家族的蛋白质)为靶点的治疗药物的临床应用仍然面临挑战。对凋亡的抵抗是癌症的标志,因此,靶向非凋亡的RCD过程可能提供抑制肿瘤生长的替代策略。三个早期临床前观察支持某些致癌信号和铁死亡诱导之间的联系:(1)铁死亡激活剂erastin被鉴定,因为它能够选择性地在含有突变型而非野生型RAS的癌细胞中触发细胞死亡;(2)RAS-RAF-MEK-ERK通路的激活是erastin诱导的细胞死亡所必需的和(3)铁,已知对癌细胞增殖很重要,也是erastin诱导的细胞死亡所必需的。随后的研究发现了一种通过铁积累、脂质过氧化和膜损伤控制铁死亡的复杂信号通路。

该网络作为肿瘤学中潜在的新靶点已经引起了极大的关注(表1)。特别是,对传统疗法有抵抗力或具有高转移倾向的癌细胞可能特别容易发生铁死亡敏感,从而开辟了靶向治疗研究的新领域。作为对先前综述的补充,我们旨在深入了解铁死亡在肿瘤发展中的机制和功能,并将其作为潜在的治疗靶点。我们描述了肿瘤异质性和与铁死亡敏感阈值相关的信号,并强调了临床应用的潜在治疗药物。

铁积累和脂质过氧化是铁死亡过程中引发膜氧化损伤的两个关键信号。铁死亡的核心分子机制涉及调节氧化损伤和抗氧化防御之间的平衡。

与非恶性细胞相比,癌细胞(尤其是癌症干细胞)的生长强烈依赖于微量元素铁。流行病学证据表明,高膳食铁摄入量增加了几种癌症类型的风险(如肝细胞癌(HCC)和乳腺癌)。这些特点表明,铁螯合药物(如去铁胺)或增加铁介导毒性的药物(如索拉非尼、柳氮磺吡啶、他汀类和青蒿素等诱导铁死亡的药物)可用于治疗癌症患者。

在动物模型中,由于多种水平的干预(如增加铁吸收、减少铁储存和限制铁流出)导致的铁积累增加通过整合的信号通路促进铁死亡。5-羟色胺转运体介导或乳转铁蛋白介导的铁摄取通过转铁蛋白受体(TFRC)和/或另一种未知受体促进铁转运,而SLC40A1介导的铁输出抑制铁转运。铁蛋白(一种铁储存蛋白)的自噬降解通过增加细胞间铁水平来增强铁死亡,而外泌体介导的铁蛋白输出抑制铁死亡。参与铁硫簇生物发生铁利用的几种线粒体蛋白(包括NFS1、ISCU26、CISD1和CISD2)可能通过降低有效的氧化还原活性铁含量来负调节铁死亡。 过量的铁通过至少两种机制促进随后的脂质过氧化:通过依赖铁的芬顿反应产生活性氧和激活含铁的酶(例如,脂氧合酶) 。因此,铁螯合剂和抗氧化剂可防止铁中毒。铁螯合剂去铁胺联合常规经动脉化疗栓塞的安全性和有效性目前正在不能切除的HCC患者中进行研究(NCT03652467)。

在铁死亡过程中,多不饱和脂肪酸(PUFAs),特别是花生四烯酸和肾上腺素酸,最容易发生过氧化反应,从而导致脂质双层的破坏,影响膜功能。细胞膜中多不饱和脂肪酸的生物合成和重塑需要酶ACSL4和LPCAT3。ACSL4催化游离花生四烯酸或肾上腺素酸和辅酶a的结合,分别形成衍生物AA–CoA或AdA–CoA,然后LPCAT3促进它们酯化成膜磷脂酰乙醇胺,形成AA–PE或AdA–PE。ACSL3将单不饱和脂肪酸(MUFAs)转化为它们的酰基辅酶a酯,以结合到膜磷脂中,从而保护癌细胞免受铁敏感性。AMPK介导的beclin1磷酸化通过抑制还原型谷胱甘肽(GSH)的产生而促进铁死亡,而AMPK介导的ACAC磷酸化被认为通过限制PUFA的产生而抑制铁死亡。这些研究扩展了AMPK的已知功能,揭示了这种激酶作为能量传感器的作用,通过不同下游底物的磷酸化决定细胞命运。过氧化物酶体介导的缩醛磷脂生物合成为铁缺乏症期间的脂质过氧化提供了另一种PUFA来源。最后,不同的脂氧合酶在介导脂质过氧化以产生氢过氧化物AA-PE-OOH或AdA-PE-OOH方面具有环境依赖性作用,这些氢过氧化物促进铁死亡。例如,脂氧合酶ALOX5、ALOXE3、ALOX15和ALOX15B负责来源于各种肿瘤类型(BJeLR、HT-1080或PANC1细胞)的人细胞系中的铁死亡,而ALOX15和ALOX12在来源于非小细胞肺癌(NSCLC)的H1299细胞中介导p53诱导的铁死亡。

几种膜电子转移蛋白,特别是POR和NADPH氧化酶(NOXs)有助于铁死亡脂质过氧化的活性氧产生。在其他情况下,哺乳动物线粒体电子传递链和三羧酸循环,再加上谷氨酰胺分解和脂质合成信号,参与了铁死亡的诱导,尽管线粒体在铁死亡中的作用目前仍有争议。当新的治疗方法可用时,进一步评估不同类型肿瘤中脂质过氧化调节因子的表达谱对指导患者选择是至关重要的

抗氧化酶GPX4可以直接将磷脂氢过氧化物还原为羟基磷脂,从而作为癌细胞中铁死亡的中心阻遏物。GPX4表达和生存结果之间的关系是肿瘤类型依赖性的。例如,GPX4的高表达水平与乳腺癌患者的预后呈负相关,但与胰腺癌患者的良好生存结果呈正相关。GPX4在铁死亡中的表达和活性依赖于谷胱甘肽和硒的存在。 谷胱甘肽是由半胱氨酸、甘氨酸和谷氨酸三种氨基酸合成的;半胱氨酸的可用性是这一过程的主要限制因素。 在哺乳动物细胞中,xc系统在将胱氨酸(半胱氨酸的氧化形式)导入细胞用于随后的GCL介导的谷胱甘肽生产中起主要作用。系统xc由两个子单元组成,SLC7A11和SLC3A2。 SLC7A11的表达和活性进一步被NFE2L2正向调节,并被肿瘤抑制基因负向调节,如TP53、BAP1和BECN1 。这种双重调节构成了一种微调机制来控制铁死亡中的谷胱甘肽水平。谷胱甘肽的其他来源可能包括反式硫化途径,该途径由氨酰基-tRNA合成酶家族负调节,如CARS1,CARS1中的一些多态性与胃癌风险增加相关。 GPX4以谷胱甘肽为底物,将膜脂氢过氧化物还原为无毒的脂醇 。在GPX4中用半胱氨酸残基取代硒代半胱氨酸(U46C)增加了它的铁死亡抗性。对系统xc(用伊拉斯汀、柳氮磺胺吡啶或索拉非尼)或GPX4(用RSL3、ML162、ML210、FIN56或FINO2)的药理学抑制诱导铁死亡。同样,SLC7A11或GPX4的基因缺失会导致脂质过氧化,并导致某些细胞或组织的铁死亡。 GPX4缺失还介导小鼠中的其他RCD过程(如凋亡、坏死和焦亡),表明脂质过氧化位于这些途径的十字路口,尽管下游效应物可能有所不同 。

几个非GPX4途径,包括AIFM2–CoQ10、GCh1–BH4和ESCRT- III膜修复系统,在防止铁死亡期间的氧化损伤方面也具有作用。这些修复途径之间可能存在协同或互补效应。事实上,AIFM2调节还原性CoQ10产生,但也可以通过激活ESCRT-III膜修复系统来防止癌细胞的铁死亡。

RAS家族(HRAS、NRAS和KRAS)的癌基因是所有人类癌症中最常见的突变。在发现索托菲尼之前,这些蛋白质被认为是“undruggable”,索托菲尼是KRAS-G12C突变蛋白质的直接抑制剂,在非小细胞肺癌患者中具有很好的活性,尽管对这种化合物的获得性抗性是常见的。KRAS-G12C的另一种选择性抑制剂阿达格列西布也显示出对KRAS-G12C阳性非小细胞肺癌和其他实体肿瘤患者的令人鼓舞的临床活性。其他针对RAS信号传导的间接策略依赖于筛选RAS依赖性生长抑制剂或特定细胞死亡诱导剂时识别的小分子。 铁死亡诱导剂erastin和RSL3对工程化RAS突变肿瘤细胞显示出选择性致死作用 。 RAS或其下游信号分子(BRAF、MEK和ERK)的遗传或药理学抑制逆转了erastin和RSL3的抗癌活性 ,可能是因为突变的RAS信号通过调节铁代谢相关基因(如TFRC、FTH1和FTL19)的表达丰富了细胞铁库。KRAS突变型肺腺癌细胞对SLC7A11抑制剂诱导的铁敏感;此外,在EGFR具有上游突变的非小细胞肺癌衍生细胞对铁死亡敏感。 这些临床前的发现支持了铁死亡的诱导可能是对抗致癌性RAS携带肿瘤的合适策略的观点 。

在临床前研究中,致癌RAS突变体(NRASV12、KRASV12和HRASV12)的异位表达降低了RMS13横纹肌肉瘤衍生细胞的铁死亡易感性,表明这些突变可能在特定情况下抑制铁死亡。此外,对117种癌细胞系对erastin的反应的分析揭示了RAS依赖和RAS非依赖铁死亡机制,这些试图破译使某些癌症易受铁死亡诱导的特定遗传特征的努力正在进行中。

在大约50%的人类癌症中,TP53是双等位基因突变或缺失的,导致野生型P53活性的丧失和肿瘤进展。所有人类癌症中最常见的六种TP53突变包括R175H(5.6%)、R248Q (4.37%)、R273H (3.95%)、R248W (3.53%)、R273C (3.31%)和R282W(2.83%)。众所周知, p53是一种转录因子,它与靶基因的启动子结合,然后激活或抑制基因合成 。例如,p53主动调节BBC3(也称为PUMA)和BAX的表达,以诱导凋亡。相比之下, p53介导的SLC7A11转录抑制促进癌细胞的铁死亡 。TP53改变(突变或多态性)改变了P53促进细胞凋亡和铁死亡的能力。p53 3KR (K117R,K161R,K162R)乙酰化缺陷突变株不能诱导细胞凋亡,但完全保留了诱导肺癌细胞系铁死亡的能力。另一个乙酰化缺陷突变体p53 4KR(K98R和3KR)和p53 P47S(一种位于p53 N端反式激活结构域的多态性)也不能诱导铁死亡。有趣的是,p53 R273H和R175H不能结合DNA,但仍然可以通过抑制其他转录因子的活性来抑制SLC7A11的表达,从而表明整合的转录因子网络控制了铁死亡主要调控因素的表达。

一些代谢相关基因,如SAT1、FDXR和GLS2,已被报道为在各种条件下负责p53介导的铁死亡的直接靶标,从而强调了p53在铁死亡中作为参与代谢的基因的调节剂的重要性。p53还具有通过直接结合二肽基肽酶DPP4来抑制人结直肠癌细胞中氮氧化物介导的脂质过氧化或通过诱导纤维肉瘤细胞中CDKN1A的表达来限制铁死亡的能力。DPP4抑制剂(如vildagliptin、alogliptin和linagliptin)用于降低2型糖尿病患者的血糖水平,并可能限制铁死亡激活剂的抗癌活性。 迄今发表的数据不仅暗示脂质过氧化是铁死亡的关键因素,而且单一p53靶基因或结合蛋白在铁死亡中的总体重要性可能是细胞类型特异性的 。此外,MDM2和MDMX这两种结合p53并调节其稳定性的蛋白质以与p53无关的方式促进癌细胞中的铁死亡,从而强调了铁死亡中p53的稳定性可能不依赖于来自MDM家族的蛋白质。Eprenetapopt和COTI-2都旨在重新激活突变型p53,目前正在应用于急性髓系白血病(AMLNCT03931291)和各种实体恶性肿瘤(NCT04383938和NCT02433626);这些药物的临床活性可能与铁死亡有关。

NFE2L2是氧化应激信号的主要调节因子,在肿瘤进展中具有双重作用:NFE2L2活性不足可导致早期肿瘤发生,而NFE2L2高组成性活性可触发肿瘤进展和对治疗的抵抗。NFE2L2在癌细胞中的表达不仅受KEAP1介导的蛋白质降解调节,还受致癌信号通路(如KRAS-BRAF-MYC)的转录调节。临床前研究表明NFE2L2信号是抵抗铁死亡的重要防御机制,并与HCC细胞对索拉非尼的抗性有关。Sequestosome 1是一种多功能支架蛋白,可结合KEAP1,并防止其在癌细胞的铁死亡过程中结合新合成的NFE2L2。

NFE2L2通过反式激活铁代谢 (包括SLC40A1、MT1G、HMOX1和FTH1)、 谷胱甘肽代谢 (包括SLC7A11、GCLM和CHAC1) 和ROS解毒酶 (包括TXNRD1、AKR1C1、AKR1C2和AKR1C3、SESN2、GSTP1和NQO1)中涉及的几种细胞保护基因来 抑制铁死亡中的氧化损伤 。NFE2L2中的功能获得突变或KEAP1中的功能丧失突变进一步增加了氧化应激反应的复杂性,这反过来可能影响对铁死亡的抗性。NFE2L2对铁死亡抗性的贡献和NFE2L2抑制剂(如布鲁塞尔醇和葫芦巴碱)增强铁死亡的治疗潜力需要在临床前和临床研究中进一步探讨。

缺氧促进肿瘤形成和治疗抵抗。缺氧的主要调节因子——缺氧诱导因子包括一个氧不稳定的α亚单位(包括缺氧诱导因子1α、EPAS1(也称为缺氧诱导因子2α)和缺氧诱导因子3α)和一个组成型表达的β亚单位(ARNT)。在常氧条件下,缺氧诱导因子EGLN家族的成员将缺氧诱导因子1α和EPAS1羟基化,然后被E3泛素连接酶VHL识别用于蛋白酶体降解。在低氧条件下,羟化酶失活导致HIF1α和EPAS1积累并与ARNT形成异二聚体,从而诱导参与低氧适应和存活的基因转录。HIF1α和EPAS1表达在多种癌症类型中都升高,通常与患者预后不良有关.

在临床试验中,已经探索了使用小分子,如2-甲氧基雌二醇(NCT00030095)、BAY 87-2243 (NCT01297530)、PX-478 (NCT00522652)和PT2385抑制缺氧诱导因子信号的策略。在这些药物中,PT2385可以稍微提高转移性透明细胞肾细胞癌(RCC)患者的生存率,而长期使用PT2385会导致获得耐药性。在临床前研究中, 缺氧诱导因子似乎在调节癌细胞铁死亡中具有双重作用 。EGLN用于催化缺氧诱导因子羟基化,不仅是氧的铁依赖性传感器,也是半胱氨酸的铁依赖性传感器。铁螯合剂可能通过抑制EGLN的活性来提高缺氧诱导因子的稳定性。在HT-1080纤维肉瘤细胞中,缺氧诱导的HIF1α表达通过增加脂肪酸结合蛋白3和7的表达来抑制铁死亡,从而促进脂肪酸摄取并增加脂质储存能力以避免随后的脂质过氧化。相反,在肾细胞癌衍生的细胞中,EPAS1的激活通过上调HILPDA的表达而促进铁死亡,从而增加PUFA的产生和随后的脂质过氧化。相比之下,在肾细胞癌衍生的细胞中,活化的EPAS1通过上调HILPDA的表达促进铁死亡,从而增加PUFA产生和随后的脂质过氧化。因此,有效控制缺氧诱导因子介导的信号是维持脂质稳态以调控铁死亡反应所必需的。如果将肿瘤细胞中铁死亡调控蛋白基因的表达作为纳入/排除标准,临床试验中缺氧诱导因子抑制剂的使用可能会得到改善。

上皮-间充质转化(EMT)是上皮细胞失去与上皮表型相关的极性和细胞间粘附特性,并逐渐获得与间充质表型相关的迁移和侵袭能力的过程。在临床实践中,EMT被认为会产生癌症干细胞,导致转移性扩散并导致治疗耐药性。EMT介导的肿瘤转移和耐药性是由转录因子刺激的,如SNAI1、TWIST1和ZB1,它们都是肿瘤学中潜在的治疗靶点。除了限制大多数抗癌治疗的效果,EMT信号还可以促进铁死亡(图3)。人类癌细胞系和器官样细胞中的高度间充质样细胞状态与对铁死亡易感性相关。ZB1的高基线转录水平与细胞对铁死亡敏感性相关,部分归因于ZB1诱导的PPARγ的上调,PPARγ是肝脏脂质代谢的主要调节因子。EMT的积极调节因子蛋白LYRIC(也称为间粘附素)通过抑制GPX4和SLC3A2的表达来促进铁死亡。CD44依赖性铁内吞作用的增加促进了铁依赖性去甲基化酶的活性,从而促进了与EMT信号传导相关的基因的表达,从而使乳腺癌细胞对铁死亡敏感。来自这些临床前研究的数据表明, EMT可能赋予铁死亡治疗的敏感性 。

EMT的第一步涉及上皮细胞之间接触的中断。钙粘蛋白1介导的细胞-细胞接触据报道可防止铁死亡。相反,SNAI1、TWIST1或ZB1表达增加可恢复铁死亡敏感性。其他细胞粘附促进剂,如整合素亚单位α6和β4,也能保护体外乳腺癌衍生细胞不发生铁死亡。相比之下,参与HIPPO途径的转录因子(如YAP1和WWTR1(也称为TAZ,通常在发育过程中控制细胞数量和器官大小)的激活通过调节铁死亡调节剂(如ACSL4、TFRC、EMP1和ANGGPTL4)的表达促进癌细胞的铁死亡。总的来说,这些发现强调了理论上的使用铁死亡诱导药物特异性消除具有间充质样表型的癌细胞的可能性。

未完待续………………

2016除了韩春雨,施一公,还有哪些重大华人研究

上半年中国科学家的科研成果屡登国际著名期刊,韩春雨今年5月在《Nature Biotechnology》上发表一篇重磅研究,发明出一种新的基因编辑技术(NgAgo-gDNA);近日施一公研究组于《科学》杂志就剪接体的结构与机理研究发表两篇长文,而且这是施一公团队第二次在《科学》上同时发表两篇论文。
  中国科学家的在一些领域的研究已走在世界的前沿,生命科学领域由是如此。下面生物谷小编整理了2016年以来部分中国科学家的重磅研究,供大家参考:
  颜宁、高福:NPC1蛋白介导胆固醇转运和埃博拉病毒入侵的分子机制--《细胞》
  (清华大学;中国疾控中心、中科院微生物组)
  原始出处:http://www.cell.com/cell/fulltext/S0092-8674(16)30570-0
  
  6月2日《细胞》发表了一篇题为《NPC1蛋白介导胆固醇转运和埃博拉病毒入侵的分子机制》的研究论文,此研究系清华大学颜宁课题组与中国疾控中心、中科院微生物组高福院士课题组合作的一项最新成果,在世界上首次解析出NPC1蛋白的清晰结构,并初步揭示了它的工作过程,从而为干预、治疗罕见遗传疾病"尼曼-皮克病"和埃博拉病毒打开了新大门。
  NPC1是一个由1278个氨基酸组成并含有13次跨膜螺旋的膜蛋白,该论文在国际学术界首次报道了人源胆固醇转运蛋白NPC1的4.4埃分辨率冷冻电镜结构。并分析探讨了NPC1和NPC2两个蛋白协作介导细胞内胆固醇转运的分子机制,同时为理解NPC1介导埃博拉病毒入侵的分子机制提供了分子基础。
  曹雪涛:找到抗病毒免疫细胞"开关"--《自然-免疫学》
  (中国工程院)
  原始出处:http://www.nature.com/ni/journal/v17/n7/full/ni.3464.html
  
  免疫系统作为机体的自卫系统,主要是依靠免疫细胞的防御功能,但免疫细胞又是如何识别外来病毒,如何自主进行防御工作的呢?
  中国工程院院士曹雪涛团队发现DNA甲基化酶Dnmt3a能够使天然免疫细胞针对病毒感染处于高敏感状态,一旦识别病毒入侵就可以显着产生干扰素和启动抗病毒天然免疫反应。此研究结果发表在英国《自然-免疫学》杂志上。
  研究人员选择能够通过调控DNA甲基化来决定基因表达的"表观遗传调控分子"为观察点,经筛选发现DNA甲基化酶Dnmt3a能够促进天然免疫细胞高效释放I型干扰素。研究结果表明,DNA甲基化能够维持抗病毒信号转导通路的关键分子高表达,为天然细胞在病毒入侵时及时高效启动抗病毒免疫反应做充分准备。该发现揭示了抗病毒免疫应答新型表观遗传机制,也为病毒感染性疾病防治提供了新的分子靶点。
  谢晓亮、白凡:揭示细菌耐药性产生分子机制--《Molecular Cel》
  (北京大学生物动态光学成像中心)
  原始出处:http://www.cell.com/molecular-cell/fulltext/S1097-2765(16)30048-X
  
  国际顶级学术期刊Cell子刊Molecular Cell于4月21日以长文在线发表了北京大学生物动态光学成像中心谢晓亮、白凡课题组的研究成果。研究人员采用综合应用单分子荧光成像技术和高通量基因测序技术,深入探究了细菌耐药性产生的机制,揭示了耐药性持留菌在大部分生理活动都静止的情况下而外排系统却在活跃地工作的原理,其不断地排出持续进入的药物分子,为耐药性细菌的存活添加安全屏障。
  外排系统越活跃体内的抗生素浓度就越低,在含有抗生素的环境中持留菌才得以生存。之前的理论认为持留菌形成一般是通过"消极的被动防御战略",最新的研究结果显示,增强外排活动将抗生素泵出从而减少细胞内药物浓度这种"积极的主动防御战略"同样起着重要的作用。这一重要发现完善了现有的关于持留菌形成的生物学机制的认识。
  王韫芳、裴雪涛:首次将胃细胞转变成肝和胰腺细胞--《细胞-干细胞》
  (军事医学科学院野战输血研究所 )
  Doi:10.1016/j.stem.2016.06.006
  
  王韫芳和裴雪涛两人的研究团队在前几日取得了一项革命性研究成果,他们利用小分子化合物技术,在国际上首次实现了利用小分子化合物诱导人体胃上皮细胞直接转换为内胚层祖细胞。内胚层祖细胞可以被诱导分化为成熟的肝细胞、胰腺细胞和肠道上皮细胞等,为将来利用干细胞技术治疗终末期肝病、糖尿病等带来新的希望。7月21日,国际著名学术期刊《细胞-干细胞》杂志在线发表了这一重要成果,覃金华、王术勇、张文成三位博士是该论文的共同第一作者。
  该研究突破了经典重编程对转录因子的依赖,丰富了干细胞再生生物学的理论体系,为成熟肝细胞、胰腺细胞等内胚层来源的功能性细胞提供了安全、可控、有效的细胞来源,在个性化再生医学治疗、药物筛选等方面具有广阔的应用前景。利用该技术在医学上可以进行个性化组织培养,解决器官移植的难题,改善消化系统疾病的治疗情况。
  刘兵、汤富酬、袁卫平:造血干细胞起源获单细胞尺度解析--《自然》
  (军事医学科学院附属医院 ;北京大学生物光学动态成像中心 ;中国医学科学院天津血液病医院 )
  原始出处:http://www.nature.com/nature/journal/vaop/ncurrent/full/nature17997.html
  
  《自然》杂志于5月19日以长文形式在线发表中国科学家刘兵课题组、汤富酬课题组和袁卫平课题组合作在造血干细胞起源研究中取得的重要突破。其通过单细胞转录组分析、单细胞诱导移植、组织特异性基因敲除等多种研究手段,首次在单细胞尺度实现小鼠造血干细胞发育全过程的深度解析。
  研究针对HSC发育过程中具有代表性的5类细胞进行单细胞转录组测序,揭示了pre-HSC在转录活性、代谢状态、动脉基因表达、信号通路和转录因子网络等方面的突出特征。利用血管内皮细胞和造血细胞特异性的两种基因敲除小鼠,阐明Rictor基因在HSC发生过程中的特异性调控作用。此外,测序数据挖掘和功能实验证实pre-HSC具有细胞周期状态的异质性,部分细胞增殖活跃。最后,通过与更多细胞群体测序数据的比对分析,发掘出pre-HSC的98个特征基因。
  邵一鸣:首次从中国病人体内分离出"青少年"HIV中和抗体--《Immunity》
  (中国疾病预防控制中心)
  Doi:10.1016/j.immuni.2016.03.006
  
  在一项新的研究中,来自中国疾病预防控制中心、北京大学、南开大学和美国斯克利普斯研究所(TSRI)等机构的研究人员描述了有史以来首个在一类强效地抵抗HIV的免疫分子中发现的未成熟的或者说"青少年"抗体。论文通信作者为TSRI生物学家Jiang Zhu和中国疾病预防控制中心艾滋病首席专家邵一鸣。相关研究结果于2016年4月5日在线发表在Immunity期刊上。
  这项研究开始于2006年,Zhu和他的同事们吃惊地发现这种抗体在2006年到2008年期间快速地进化,获得抵抗HIV所需的很多特征。之前的研究提示着VRC01级别抗体需要花费长达10到15年的时间产生有用的特征,而这一发现有力地反驳了这一点。研究人员也注意到这是首次从一名亚洲病人体内分离出VRC01级别抗体,之前的VRC01级别抗体来自非洲人或白种人病人。这意味着不同遗传背景的人们可能受益于一种利用人体制造VRC01级别抗体能力的疫苗。
  刘光慧:抑制引起早衰的NRF2抗氧化通路--《Cell》
  (中国科学院生物物理研究所)
  原始出处:http://www.cell.com/cell/fulltext/S0092-8674(16)30565-7
  
  中国科学院生物物理研究所刘光慧实验室与美国国立卫生研究院(NIH)国家癌症研究所Tom Misteli研究组合作,通过筛选具有逆转人类细胞衰老潜能的基因,发现转录因子NRF2(NF-E2-related factor 2)介导的细胞抗氧化通路的紊乱是导致细胞衰老的驱动力。此外,通过筛选具有激活NRF2通路功能的小分子化合物,发现一种用于治疗脂肪肝的NRF2激动剂奥替普拉可以延缓间充质干细胞衰老的进程,并提高其体内活性。该研究成果于6月2日发表在Cell杂志上。
  研究表明,异常表达的progerin与转录因子NRF2结合,并将其捕获锁定在细胞核膜上,使之无法正常激活下游抗氧化基因的表达,引起细胞的慢性氧化应激。在年轻的正常间充质干细胞中抑制NRF2的活性可以模拟儿童早衰症的多种加速衰老的细胞缺陷,而在儿童早衰症患者诱导多能干细胞(iPSC)衍生的间充质干细胞中重新激活NRF2可以有效逆转细胞加速衰老的表型。这些研究结果不仅有助于加深人们对于人类衰老的认识,而且为延缓衰老及防治衰老相关疾病提供了新的靶标和策略。
  周永胜:找到利用脂肪干细胞治疗骨缺陷疾病的新靶点--《Stem Cell Reports》
  (北京大学口腔医学院)
  Doi:10.1016/j.stemcr.2016.06.010 ?
  
  近日,北京大学口腔医学院周永胜研究小组在《Cell》子刊Stem Cell Reports上发表了一项最新研究进展,他们发现一种microRNA能够通过影响脂肪干细胞的信号调控网络促进骨生成,该研究为利用脂肪干细胞治疗骨质疏松等疾病提供了新的方向。
  组织工程技术已经成为骨再生医学领域最具治疗前景手段之一。人类脂肪来源干细胞作为一种间充质干细胞在组织工程领域得到越来越多的关注。深入了解脂肪干细胞向骨方向分化的分子调控网络是开发干细胞治疗方法的重要基础。
  该研究发现MiR-34a在人类脂肪来源干细胞(hASC)向骨方向分化的过程中会出现表达上调。在体外过表达MiR-34a能够显着增加hASC的碱性磷酸酶活性,矿化能力同时还会促进骨生成相关基因的表达。在hASC中过表达MiR-34a再进行异位移植也会观察到骨形成能力增强。
  中国研究人员:发现遏制乳腺癌进展的重要microRNA--《cancer research》
  (广州中山大学)
  Doi:10.1158/0008-5472.CAN-15-1770?
  
  许多研究表明转录因子NF-kB在肿瘤细胞中存在异常激活,是导致许多肿瘤发生的一个重要驱动因素。在正常的生理条件下,NF-kB信号的表达强度和持续时间会在多个水平上得到严格调控,但NF-kB信号途径在癌症中持续激活的机制究竟是什么一直没有得到完全阐述。
  最近来自广州中山大学的研究人员在国际学术期刊cancer research上发表了一项最新研究进展,他们发现了一种microRNA发生沉默可能参与癌细胞内NF-kB信号的异常激活。
  在这项研究中,研究人员在乳腺癌细胞中研究了microRNA介导的NF-kB信号级联调控,并发现miR-892b表达在人类乳腺癌标本中显着下调,同时该microRNA的表达情况与病人生存期存在相关性。
  研究人员通过体外实验和体内实验证明,在乳腺癌细胞中过表达miR-892b能够显着抑制肿瘤细胞生长,转移能力以及诱导血管生成的能力,而删除细胞中的miR-892b则会增强上述特性。实验表明miR-892b能够通过直接靶向抑制NF-kB的多个调节蛋白的表达,抑制NF-kB信号途径,其靶向目标包括TRAF2, TAK1以及TAB3,因此乳腺癌细胞中的miR-892b发生沉默会维持NF-kB活性,导致该信号通路持续激活,进而增强肿瘤细胞生长和转移能力。
  中国研究人员:解答钠盐摄入如何影响血糖平衡--《cell metabolism》
  (中国第三军医大学)
  Doi:http://dx.doi.org/10.1016/j.cmet.2016.02.019?
  
  来自中国第三军医大学的研究人员在国际学术期刊cell metabolism上发表了一项最新研究进展,他们发现钠盐的摄入能够通过一条由脂肪组织PPARδ介导的信号途径调节血糖平衡。这项研究对于指导人们健康饮食,帮助糖尿病病人预防心血管代谢病变具有重要意义。
  高钠盐摄入是糖尿病患者发生高血压的一个主要风险因素,促进钠的排泄能够降低糖尿病患者出现心血管代谢病变的风险。但是目前关于钠盐的摄入与葡萄糖平衡之间的关系了解得仍然不够深入。
  在这项最新研究中,研究人员报告称高钠盐摄入能够显着增加野生型小鼠的尿钠排泄,但是这种作用在脂肪组织特异性敲除了PPARδ的小鼠和糖尿病小鼠模型中受到了阻断。与此同时,研究人员发现使用激动剂或高钠盐摄入激活肾周脂肪的PPARδ能够调节脂肪组织adiponectin的水平,进而抑制肾脏钠-葡萄糖协同转运蛋白2(SGLT2)的功能,SGLT2是肾脏进行葡萄糖重吸收的一种主要转运蛋白,SGLT2抑制剂是一类重要的糖尿病治疗药物。上述结果表明高钠盐诱导的尿钠排泄过程受到脂肪组织PPARδ的调节作用,而PPARδ的这种调控作用需要adiponectin介导,并通过调节SGLT2 的功能来实现。
  除此之外,研究人员还发现在糖尿病状态下,由于肾脏SGLT2的功能发生紊乱,高盐摄入诱导的尿钠排泄也受到了损伤。存在高血糖症的2型糖尿病病人尿钠排泄更少,这与他们血浆中的adiponectin水平有关

高鹏的发表的文章:

(*为通讯作者)
1. Gao, P., Chak-Lui Wong, C., Kwok-Kwan Tung, E., Man-Fong Lee, J., Wong, C-M., Oi-Lin Ng, I*. Deregulation of microRNA expression occurs early and accumulates in early stages of HBV-associated multistep hepatocarcinogenesis, Journal of Hepatology 2011;54(6):1177-84.(SCI收录,IF=9.35)
2. Gao, P*,Wei JM, Li PY, Zhang CJ, Jian WC, Zhang YH, Xing AY, Zhou GY*.Screening of deoxyribozyme with high reversal efficiency against multidrug resistance in breast carcinoma cells. J Cell Mol Med. 2011;15(10):2130-8.(SCI收录,IF=5.22)
3. Gao P*, Zhou GY, Zhang QH, Su ZX, Zhang TG, Xiang L, Wang Y, Zhang SL, Mu K. Lymphangiogenesis in gastric carcinoma correlates with prognosis. Journal of pathology, 2009;218(2):192-200. (SCI收录,IF=7.42)
4. Gao P*, Yang X, Xue YW, Zhang XF, Wang Y, Liu WJ, Wu XJ. Promoter methylation of glutathione S-transferase pi1 and multidrug resistance gene 1 in bronchioloalveolar carcinoma and its correlation with DNA methyltransferase 1 expression. Cancer, 2009 115(14):3222-32. (SCI收录,IF=5.43)
5. Gao P*, Zhou GY, Yin G, Liu Y, Liu ZY, Zhang J, Hao CY. Lymphatic Vessel density as a prognostic indicator for patients with stage I cervical carcinoma. Human Pathology, 2006;37(6):719-725. (SCI收录,IF=3.03)
6. Gao P*, Zhou GY, Guo LL, Zhang QH, Zhen JH, Fang AJ, Lin XY. Reversal of drug resistance in breast carcinoma cells by anti-mdr1 ribozyme regulated by the tumor-specific MUC-1 promoter. Cancer Letters. 2007;256(1):81-9. (SCI收录,IF=4.86)
7. Gao P*, Zhou GY*, Zhang QH, Xiang L, Zhang SL, Li C, Sun YL. Clinicopathological significance of peritumoral lymphatic vessel density in gastric carcinoma. Cancer Letters. 2008 18;263(2):223-30. (SCI收录,IF=4.86)
8. Gao P*, Zhou GY*, Lei DP, Zhang XF, Li L, Xu JW, Lin XY. Selection of antisense oligonucleotides for reversal of multidrug resistance in breast carcinoma cells. Cytotherapy. 2007;9(8) 795-801. (SCI收录,IF=3.47)
9. Gao P, Zhou GY*, Zhang QH, Li H, Mu K, Yuan YP, Zhang J, Wang BH. Reversal MDR in breast carcinoma cells by ribozyme designed according the secondary structure of mdr1 mRNA. Chinese Journal of Physiology, 2006;49(2) :96-103. (SCI收录,IF=0.68)
10. Guo L L, Gao P* (通讯作者), Wu YG, Jian WC, Hao CY, Li H, Lin XY. Alteration of Cyclin D1 in Chinese Patients with Breast Carcinoma and its Correlation with Ki-67, pRb, and p53. Archives of Medical Research, 2007;38(8):846-52. (SCI收录,IF=1.98)
11. Gao P*, Zhou GY, Liu Y, Li JS, Zhen JH, Yuan YP. Alteration of cyclin D1 in gastric carcinoma and its clinicopathologic significance. World Journal of Gastroenterology,2004,10(20)2936-2939.( IF=2.02)
12. Gao P*, Yang X, Zhao H. Reply to Promoter methylation of glutathione S-transferase pi1 and multidrug resistance gene 1 in bronchioloalveolar carcinoma and its correlation with DNA methyltransferase 1 expression. Cancer. 2010 Apr 1;116(7):1839.(author reply, SCI收录,IF=5.43)
13. Gao P*, Ai-Yan Xing, Geng-Yin Zhou, Ting-Guo Zhang, Chao Gao. The molecular mechanism of microRNA-145 to suppress invasion-metastasis cascade in gastric cancer. Oncogene.2011. Accepted. (SCI收录,IF=7.46)
14. Ai-Yan Xing, Xiao-Fang Zhang, Xiu-Quan He, Bin Wang , Wen-Jun Liu, Chao Gao, Duan-Bo Shi, Gao P* (通讯作者). miR-145 is underexpressed in manifold human cancers and might serve as a tumor suppressor. Ann Surg Oncol. 2011.Accepted. (SCI收录,IF=4.19)
15. 高鹏, 周庚寅,张庆慧等。乳腺癌组织中多形上皮粘蛋白1表达与肿瘤侵袭力的研究。中华医学杂志,2005;85(6):381-384。
16. 高鹏,周庚寅等。转染抗mdr-1核酶基因逆转肿瘤细胞耐药性的研究,中华病理学杂志,2004,33(3):251-254.
17. 高鹏,周庚寅等。负向调节多药耐药基因1转录逆转肿瘤细胞多药耐药。中华病理学杂志,2003;32(6):563-566。
18. 高鹏,周庚寅等.硫化型反义寡核苷酸逆转乳腺癌多药耐药的研究。中华实验外科杂志,2004,21(2),79-80.
19. 高鹏,周庚寅等。乳腺癌C-erbB2改变与内分泌治疗敏感性及预后的关系。中国普通外科杂志,2003,10:735-738。
20. Gao P, Zhou Geng Yin, Wu Ya Guang, et al. Expression of cyclin D1 protein in breast tumors and its relationship with genetic alteration. US-chinese journal of lymphology and oncology,2003,2:7-10.
21. 高鹏,周庚寅等.细胞表面糖蛋白表达异常与涎腺多形性腺瘤复发的关系.华西口腔医学杂志,2005,23(2):164-166。
22. 高鹏,周庚寅等。乳腺癌细胞周期素D1基因改变和表转录异常对其蛋白表达的影响。中国现代普通外科进展,2004,7:31-34。
23. 高鹏,王美清等.卵巢上皮性肿瘤多种癌基因改变及蛋白表达的研究。现代妇产科进展,2001,10:346-348。
24. 高鹏,王美清等.乳腺良恶性增生中Cyclin D1表达的研究。山东医科大学学报,2001,39:423-425.
25. 高鹏,周庚寅. 肿瘤多药耐药及其基因治疗。中国现代普通外科进展,2005,8(2):72-75。
26. 高鹏,周庚寅.免疫组织化学的原理及应用. 山东卫生,2003,27(3):52-53. 杨希,高鹏*,薛玉文,王妍,刘文君,张晓芳.肺腺癌中DNA 甲基转移酶1 的表达.山东大学学报(医学版),2009:47(1)30-33.
27. Sun Y, Zhang T, Gao P, Meng B, Gao Y, Wang X, Zhang J, Wang H, Wu X, Zheng W, Zhou G. Targeting glucosylceramide synthase downregulates expression of the multidrug resistance gene MDR1 and sensitizes breast carcinoma cells to anticancer drugs. Breast Cancer Res Treat. 2010;121(3):591-9.(SCI收录)
28. Yin G, Liu YQ, Gao P, Wang XH. Male urethritis glandularis: case report. Chin Med J (Engl). 2007;120(16):1460-1. (SCI收录)
29. Zhang X, Li J, Qiu Z, Gao P, Wu X, Zhou G.. Co-suppression of MDR1 (multidrug resistence 1) and GCS (glucosylceramide synthase) restores sensitivity to mutidrug resistance breast cancer cells by RNA interference (RNAi). Cancer Biol Ther. 2009;8(12):1117-21. (SCI收录)
30. Sun YL, Zhou GY, Li KN, Gao P, Zhang QH, Zhen JH, Bai YH, Zhang XF. Suppression of glucosylceramide synthase by RNA interference reverses multidrug resistance in human breast cancer cells. Neoplasma. 2006;53(1):1-8. (SCI收录)
31. Zhang Y, Wang H, Wei L, Li G, Yu J, Gao Y, Gao P,et al. Transcriptional modulation of BCRP gene to reverse multidrug resistance by toremifene in breast adenocarcinoma cells. Breast Cancer Res Treat. 2010;123(3):679-89. (SCI收录)
32. Zhang X, Wu X, Li J, Sun Y, Gao P, Zhang C, Zhang H, Zhou G. MDR1 (multidrug resistence 1) can regulate GCS (glucosylceramide synthase) in breast cancer cells. J Surg Oncol. 2011 Oct;104(5):466-71.(SCI收录)
33. Mu K, Li L, Yang Q, Zhang T, Gao P, Meng B, Liu Z, Wang Y, Zhou G. Detection of CHK1 and CCND1 gene copy number changes in breast cancer with dual-colour fluorescence in-situ hybridization. Histopathology. 2011;58(4):601-7. (SCI收录)
34. ABCG2 is associated with HER-2 Expression, lymph node metastasis and clinical stage in breast invasive ductal carcinoma. Xiang L, Su P, Xia S, Liu Z, Wang Y, Gao P, Zhou G. Diagn Pathol. 2011 Sep 27;6:90. (SCI收录)
35. 刘媛,高鹏等.胎盘细胞凋亡与胎儿生长受限的研究.中华妇产科杂志,2002,12:721-722.
36. 周庚寅,高鹏等.疑似星形细胞瘤的脱髓鞘假瘤2例报道及文献复习. 临床与实验病理学杂志.2004.12
37. 孙妍琳,高鹏等.肿瘤细胞多药耐药与神经酰胺的糖基化.中国现代普通外科进展.2004,7(3):139-141.
38. 第4作者.PTEN过表达增加人乳腺癌MCF_7细胞对阿霉素的药敏性。中华普通外科杂志,2005,20(4):240-242.
39. 第4作者.葡萄籽多酚逆转人乳腺癌多药耐药性及其机制的研究. 中华普通外科杂志,2004,19(8):488-490.
40. 第4作者.RNA干扰沉默缺氧诱导因子-1α逆转乳腺癌的耐药性. 中华病理学杂志,2006,35(6):357-360 。
41. 第4作者. 吸烟对呼吸道上皮损伤机制的研究.中国公共卫生,2005.21(8):897-899。
42. 第4作者. HIF-1α P-gp在腋淋巴结阴性乳腺癌组织中的表达及意义.中国肿瘤临床.2007,34(2)10-13.
43. 第4作者. 葡萄籽多酚对多药耐药的逆转作用及其机制. 山东大学学报(医学版).2004,42(4)387-389.
44. 第4作者.大鼠急性心肌梗死心肌ER表达的变化规律.中国法医学杂志.2005,20(2):84-85.
45. 第4作者. 体外瞬时转染野生型PTEN过表达对乳腺癌MCF_7细胞的影响. 山东大学学报(医学版).2005,43(3):203-207.
46. 第4作者. 原发性肝癌中HIF-1α、P-gp的表达及相关性的研究山东大学学报(医学版).2007,45(3):246-249.
47. 第4作者. 脑皮质星形胶质细胞的纯化培养. 山东大学学报(医学版).2006,44(8):857-859.
48. 第5作者. 葡萄籽多酚对逆转人乳腺癌细胞MCF-7/ZAIZ在裸鼠的多药耐药逆转作用. 中华外科杂志,2004,42(13)795-798.
49. 第5作者.葡萄糖神经酰胺合成酶在人乳腺癌细胞的表达及其与多药耐药的关系。中华病理学杂志,2005,34(2):109-110 。
50. 第5作者. 腋淋巴结阴性乳腺癌中基因表达PTEN和微血管密度的关系及意义.中国肿瘤临床,2005,32(5):248-251。
51. 第5作者.人乳腺癌细胞中葡萄糖神经酰胺合成酶基因的表达和意义. 中国现代普通外科进展,2005,8(3):141-143.
52. 第6作者.GCS特异性小干扰RNA表达载体的构建及其逆转乳腺癌细胞耐药的研究。中华医学杂志,2005,85(8):518-521 。
53. 第5作者. 小分子干扰RNA联合反义脱氧寡核苷酸靶向逆转人乳腺癌细胞MCF-7/ADR多药耐药的研究.中华乳腺病杂志(电子版),2008,2(4):436-442 。

本文地址:http://www.dadaojiayuan.com/jiankang/294678.html.

声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:douchuanxin@foxmail.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!

上一篇:

下一篇:

相关文章