2016年08月22日讯 据物理学家组织网日前报道,IBM公司的科学家使用相变材料,制造出了能存储和处理数据的随机脉冲神经元。科研人员表示,这种神经元集群与人造突触等纳米计算元件联合,或是制造可用于认知计算领域的下一代超密集神经形态计算系统的关键,这一系统可用于认知计算领域。
研究负责人埃万杰洛斯·埃莱夫特里乌说:“十多年来,我们一直在研究相变存储(PCM)材料。今年5月我们公布的最新相变存储技术表明,每个单元能稳定存储3比特数据;现在我们再次证明,基于相变材料的人工神经元能执行多种计算,如检测数据关联等,而且速度快、能耗低。”
最新制造出的人工神经元由包括锗锑碲化物在内的相变材料组成,这些相变材料会展示出非结晶态和结晶态两种稳定的状态:一种非结晶态;一种结晶态,是制造可擦写蓝光光盘的基础。
在最新研究中,科学家们在人工神经元上施加了一系列电子脉冲,使相变材料不断结晶,最终导致神经元“点火”。在神经科学领域,这一功能被称为生物神经元的集成-点火属性,它是基于事件的计算基础。从原理上说,与人们接触某些热东西后大脑的反应一样。
这一发现使单个神经元也能被用来探测行为模式,发现基于事件的实时数据流内的关联。例如,在物联网中,传感器能收集并分析海量天气数据用于天气预报;这一人工神经元也能用来探测金融交易模式中的差异。能用于拥有协同定位存储和处理单元的神经形态协同处理器内。
IBM的科学家们让数百个神经元组成集群,并使用它们来代表快而复杂的信号;同时证明,这些人工神经元能耐受数十亿次的开关操作,相当于以100赫兹的更新频率工作多年。神经元每次更新所需的能量不到5皮焦(10-12焦),平均电压不足120微瓦(百万分之一瓦)。
1:计算机语言之父:尼盖德
10日,计算机编程语言的先驱克里斯汀·尼盖德死于心脏病,享年75岁。尼盖德帮助因特网奠下了基础,为计算机业做出了巨大贡献。据挪威媒体报道,尼盖德11日在挪威首都奥斯陆逝世。
尼盖德是奥斯陆大学的教授,因为发展了Simula编程语言,为MS-DOS和因特网打下了基础而享誉国际。克里斯汀·尼盖德于1926年在奥斯陆出生,1956年毕业于奥斯陆大学并取得数学硕士学位,此后致力于计算机计算与编程研究。
1961年~1967年,尼盖德在挪威计算机中心工作,参与开发了面向对象的编程语言。因为表现出色,2001年,尼盖德和同事奥尔·约安·达尔获得了2001年A.M.图灵机奖及其它多个奖项。当时为尼盖德颁奖的计算机协会认为他们的工作为Java,C++等编程语言在个人电脑和家庭娱乐装置的广泛应用扫清了道路,“他们的工作使软件系统的设计和编程发生了基本改变,可循环使用的、可靠的、可升级的软件也因此得以面世
世纪发现·从图灵机到冯·诺依曼机
英国科学家艾伦·图灵1937年发表著名的《论应用于解决问题的可计算数字》一文。文中提出思考原理计算机——图灵机的概念,推进了计算机理论的发展。1945年图灵到英国国家物理研究所工作,并开始设计自动计算机。1950年,图灵发表题为《计算机能思考吗?》的论文,设计了著名的图灵测验,通过问答来测试计算机是否具有同人类相等的智力。
图灵提出了一种抽象计算模型,用来精确定义可计算函数。图灵机由一个控制器、一条可无限伸延的带子和一个在带子上左右移动的读写头组成。这个在概念上如此简单的机器,理论上却可以计算任何直观可计算的函数。图灵机作为计算机的理论模型,在有关计算机和计算复杂性的研究方面得到广泛应用。
计算机是人类制造出来的信息加工工具。如果说人类制造的其他工具是人类双手的延伸,那么计算机作为代替人脑进行信息加工的工具,则可以说是人类大脑的延伸。最初真正制造出来的计算机是用来解决数值计算问题的。二次大战后期,当时为军事目的进行的一系列破译密码和弹道计算工作,越来越复杂。大量的数据、复杂的计算公式,即使使用电动机械计算器也要耗费相当的人力和时间。在这种背景下,人们开始研制电子计算机。
世界上第一台计算机“科洛萨斯”诞生于英国,“科洛萨斯”计算机是1943年3月开始研制的,当时研制“科洛萨斯”计算机的主要目的是破译经德国“洛伦茨”加密机加密过的密码。使用其他手段破译这种密码需要6至8个星期,而使用‘科洛萨斯’计算机则仅需6至8小时。1944年1月10日,“科洛萨斯”计算机开始运行。自它投入使用后,德军大量高级军事机密很快被破译,盟军如虎添翼。“科洛萨斯”比美国的ENIAC计算机问世早两年多,在二战期间破译了大量德军机密,战争结束后,它被秘密销毁了,故不为人所了解。
尽管第一台电子计算机诞生于英国,但英国没有抓住由计算机引发的技术和产业革命的机遇。相比之下,美国抓住了这一历史机遇,鼓励发展计算机技术和产业,从而崛起了一大批计算机产业巨头,大大促进了美国综合国力的发展。1944年美国国防部门组织了有莫奇利和埃克脱领导的ENIAC计算机的研究小组,当时在普林斯顿大学工作的现代计算机的奠基者美籍匈牙利数学家冯·诺依曼也参加了者像研究工作。1946年研究工作获得成功,制成了世界上第一台电子数字计算机ENIAC。这台用18000只电子管组成的计算机,尽管体积庞大,耗电量惊人,功能有限,但是确实起了节约人力节省时间的作用,而且开辟了一个计算机科学技术的新纪元。这也许连制造它的科学家们也是始料不及的。
最早的计算机尽管功能有限,和现代计算机有很大的差别,但是它已具备了现代计算机的基本部分,那就是运算器、控制器和存储器。
运算器就象算盘,用来进行数值运算和逻辑运算,并获得计算结果。而控制器就象机算机的司令部,指挥着计算机各个部分的工作,它的指挥是靠发出一系列控制信号完成的。
计算机的程序、数据、以及在运算中产生的中间结果以及最后结果都要有个存储的地方,这就是计算机的第三个部件——存储器。
计算机是自动进行计算的,自动计算的根据就是存储于计算机中的程序。现代的计算机都是存储程序计算机,又叫冯·诺依曼机,这是因为存储程序的概念是冯·诺依曼提出的。人们按照要解决的问题的数学描述,用计算机能接受的“语言”编制成程序,输入并存储于计算机,计算机就能按人的意图,自动地高速地完成运算并输出结果。程序要为计算机提供要运算的数据、运算的顺序、进行何种运算等等。
微电子技术的产生使计算机的发展又有了新的机遇,它使计算机小型化成为可能。微电子技术的发展可以追溯到晶体管的出现。1947年美国电报电话公司的贝尔实验室的三位学家巴丁、不赖顿和肖克莱制成第一支晶体管,开始了以晶体管代替电子管的时代。
晶体管的出现可以说是集成电路出台的序幕。晶体管出现后,一些科学家发现,把电路元器件和连线像制造晶体管那样做在一块硅片上可实现电路的小型化。于是,晶体管制造工业经过10年的发展后,1958年出现了第一块集成电路。
微电子技术的发展,集成电路的出现,首先引起了计算机技术的巨大变革。现代计算机多把运算器和控制器做在一起,叫微处理器,由于计算机的心脏——微处理器(计算机芯片)的集成化,使微型计算机应运尔生,并在70-80年代间得到迅速发展,特别是IBM PC个人计算机出现以后,打开了计算机普及的大门,促进了计算机在各行各业的应用,五六十年代,价格昂贵、体积庞大、耗电量惊人的计算机,只能在少数大型军事或科研设施中应用,今天由于采用了大规模集成电路,计算机已经进入普通的办公室和家庭。
标志集成电路水平的指标之一是集成度,即在一定尺寸的芯片上能做出多少个晶体管,从集成电路出现到今天,仅40余年,发展的速度却是惊人的,芯片越做越小,这对生产、生活的影响也是深远的。ENIAC计算机占地150平方米,重达30吨,耗电量几百瓦,其所完成的计算,今天高级一点的袖珍计算器皆可完成。这就是微电子技术和集成电路所创造的奇迹。
现状与前景
美国科学家最近指出,经过30多年的发展,计算机芯片的微型化已接近极限。计算机技术的进一步发展只能寄希望于全新的技术,如新材料、新的晶体管设计方法和分子层次的计算技术。
过去30多年来,半导体工业的发展基本上遵循穆尔法则,即安装在硅芯片上的晶体管数目每隔18个月就翻一番。芯片体积越来越小,包含的晶体管数目越来越多,蚀刻线宽越来越小;计算机的性能也因而越来越高,同时价格越来越低。但有人提出,这种发展趋势最多只能再持续10到15年的时间。
美国最大的芯片生产厂商英特尔公司的科学家保罗·A·帕坎最近在美国《科学》杂志上撰文说,穆尔法则(1965年提出的预测半导体能力将以几何速度增长的法则)也许在未来10年里就会遇到不可逾越的障碍:芯片的微型化已接近极限。人们尚未找到超越该极限的方法,一些科学家将其称之为“半导体产业面临的最大挑战”。
目前最先进的超大规模集成电路芯片制造技术所能达到的最小线宽约为0.18微米,即一根头发的5%那样宽。晶体管里的绝缘层只有4到5个原子那样厚。日本将于2000年初开始批量生产线宽只有0. 13微米的芯片。预计这种芯片将在未来两年得到广泛应用。下一步是推出线宽0. 1微米的的芯片。帕坎说,在这样小的尺寸上,晶体管只能由不到100个原子构成。
芯片线宽小到一定程度后,线路与线路之间就会因靠得太近而容易互相干扰。而如果通过线路的电流微弱到只有几十个甚至几个电子,信号的背景噪声将大到不可忍受。尺寸进一步缩小,量子效应就会起作用,使传统的计算机理论完全失效。在这种情况下,科学家必须使用全新的材料、设计方法乃至运算理论,使半导体业和计算机业突破传统理论的极限,另辟蹊径寻求出路。
当前计算机发展的主流是什么呢?国内外比较一致的看法是
RISC
RISC是精简指令系统计算机(Reduced Instruction Set Computer)的英文缩写。所谓指令系统计算机所能执行的操作命令的集合。程序最终要变成指令的序列,计算机能执行。计算机都有自己的指令系统,对于本机指令系统的指令,计算机能识别并执行,识别就是进行译码——把代表操作的二进制码变成操作所对应的控制信号,从而进行指令要求的操作。一般讲,计算机的指令系统约丰富,它的功能也约强。RISC系统将指令系统精简,使系统简单,目的在于减少指令的执行时间,提高计算机的处理速度。传统的计算机一般都是每次取一条指令,而RISC系统采用多发射结构,在同一时间发射多条指令,当然这必须增加芯片上的执行部件。
并行处理技术
并行处理技术也是提高计算机处理速度的重要方向,传统的计算机,一般只有一个中央处理器,中央处理器中执行的也只是一个程序,程序的执行是一条接一条地顺序进行,通过处理器反映程序的数据也是一个接一个的一串,所以叫串行执行指令。并行处理技术可在同一时间内多个处理器中执行多个相关的或独立的程序。目前并行处理系统分两种:一种具有4个、8个甚至32个处理器集合在一起的并行处理系统,或称多处理机系统;另一种是将100个以上的处理器集合在一起,组成大规模处理系统。这两种系统不仅是处理器数量多少之分,其内部互连方式、存储器连接方式、操作系统支持以及应用领域都有很大的不同。
曾经有一段时间,超级计算机是利用与普通计算机不同的材料制造的。最早的克雷1号计算机是利用安装在镀铜的液冷式电路板上的奇形怪状的芯片、通过手工方式制造的。而克雷2号计算机看起来更加奇怪,它在一个盛有液态碳氟化合物的浴器中翻腾着气泡———采用的是“人造血液”冷却。并行计算技术改变了所有这一切。现在,世界上速度最快的计算机是美国的“Asci Red”, 这台计算机的运算速度为每秒钟2·1万亿次,它就是利用与个人计算机和工作站相同的元件制造的,只不过超级计算机采用的元件较多而已,内部配置了9000块标准奔腾芯片。鉴于目前的技术潮流,有一点是千真万确的,那就是超级计算机与其它计算机的差别正在开始模糊。
至少在近期,这一趋势很明显将会继续下去。那么,哪些即将到来的技术有可能会扰乱计算技术的格局,从而引发下一次超级计算技术革命呢?
这样的技术至少有三种:光子计算机、生物计算机和量子计算机。它们能够成为现实的可能性都很小,但是由于它们具有引发革命的潜力,因此是值得进行研究的。
光子计算机
光子计算机可能是这三种新技术中最接近传统的一种。几十年来,这种技术已经得到了有限的应用,尤其是在军用信号处理方面。
在光子计算技术中,光能够像电一样传送信息,甚至传送效果更好,,光束在把信息从一地传送至另一地的效果要优于电,这也就是电话公司利用光缆进行远距离通信的缘故。光对通信十分有用的原因,在于它不会与周围环境发生相互影响,这是它与电不同的一点。两束光线可以神不知鬼不觉地互相穿透。光在长距离内传输要比电子信号快约100倍,光器件的能耗非常低。预计,光子计算机的运算速度可能比今天的超级计算机快1000到10000倍。
令人遗憾的是,正是这种极端的独立性使得人们难以制造出一种全光子计算机,因为计算处理需要利用相互之间的影响。要想制造真正的光子计算机,就必须开发出光学晶体管,这样就可以用一条光束来开关另一条光束了。这样的装置已经存在,但是要制造具有适合的性能特征的光学晶体管,还需要仰仗材料科学领域的重大突破。
生物计算机
与光子计算技术相比,大规模生物计算技术实现起来更为困难,不过其潜力也更大。不妨设想一种大小像柚子,能够进行实时图像处理、语音识别及逻辑推理的超级计算机。这样的计算机已经存在:它们就是人脑。自本世纪70年代以来,人们开始研究生物计算机(也叫分子计算机),随着生物技术的稳步发展,我们将开始了解并操纵制造大脑的基因学机制。
生物计算机将具有比电子计算机和光学计算机更优异的性能。如果技术进步继续保持目前的速度,可以想像在一二十年之后,超级计算机将大量涌现。这听起来也许像科幻小说,但是实际上已经出现了这方面的实验。例如,硅片上长出排列特殊的神经元的“生物芯片”已被生产出来。
在另外一些实验室里,研究人员已经利用有关的数据对DNA的单链进行了编码,从而使这些单链能够在烧瓶中实施运算。这些生物计算实验离实用还很遥远,然而1958年时我们对集成电路的看法也不过如此。
量子计算机
量子力学是第三种有潜力创造超级计算革命的技术。这一概念比光子计算或生物计算的概念出现得晚,但是却具有更大的革命潜力。由于量子计算机利用了量子力学违反直觉的法则,它们的潜在运算速度将大大快于电子计算机。事实上,它们速度的提高差不多是没有止境的。一台具有5000个左右量子位的量子计算机可以在大约3 0秒内解决传统超级计算机需要100亿年才能解决的素数问题。
眼下恰好有一项重要的用途适合这种貌似深奥的作业。通过对代表数据的代码进行加密,计算机数据得到保护。而解密的数学“钥匙”是以十分巨大的数字——一般长达250位——及其素数因子的形式出现的。这样的加密被认为是无法破译的,因为没有一台传统计算机能够在适当的时间里计算出如此巨大数字的素数因子。但是,至少在理论上,量子计算机可以轻易地处理这些素数加密方案。因此,量子计算机黑客将不仅能够轻而易举地获得常常出没于各种计算机网络(包括因特网)中的信用卡号码及其他个人信息,而且能够轻易获取政府及军方机密。这也正是某些奉行“宁为人先、莫落人后”这一原则的政府机构一直在投入巨资进行量子计算机研究的原因。
量子超级网络引擎
量子计算机将不大可能破坏因特网的完整性,不仅如此,它们到头来还可能给因特网带来巨大的好处。两年前,贝尔实验室的研究人员洛夫·格罗弗发现了用量子计算机处理我们许多人的一种日常事务的方法———搜寻隐藏在浩如烟海的庞大数据库内的某项信息。寻找数据库中的信息就像是在公文包里找东西一样。如果各不相同的量子位状态组合分别检索数据库不同的部分,那么其中的一种状态组合将会遭遇到所需查找的信息。
由于某些技术的限制,量子搜索所能带来的速度提高并没有预计的那么大,例如,如果要在1亿个地址中搜索某个地址,传统计算机需要进行大约5000万次尝试才能找到该地址;而量子计算机则需大约1万次尝试,不过这已经是很大的改善了,如果数据库增大的话,改善将会更大。此外,数据库搜索是一种十分基础的计算机任务,任何的改善都很可能对大批的应用产生影响。
迄今为止,很少有研究人员愿意预言量子计算机是否将会得到更为广泛的应用。尽管如此,总的趋势一直是喜人的。尽管许多物理学家————如果不是全部的话———一开始曾认为量子力学扑朔迷离的本性必定会消除实用量子计算技术面临的难以捉摸而又根深蒂固的障碍,但已经进行的深刻而广泛的理论研究却尚未能造就一台实实在在的机器。
那么,量子计算机的研究热潮到底意味着什么?计算技术的历史表明,总是先有硬件和软件的突破,然后才出现需要由它们解决的问题。或许,到我们需要检索那些用普通计算机耗时数月才能查完的庞大数据库时,量子计算机才将会真正开始投入运行。研究将能取代电子计算机的技术并非易事。毕竟,采用标准微处理器技术的并行计算机每隔几年都会有长足的进步。因此,任何要想取代它的技术必须极其出色。不过,计算技术领域的进步始终是十分迅速的,并且充满了意想不到的事情。对未来的预测从来都是靠不住的,事后看来,那些断言“此事不可行”的说法,才是最最愚蠢的。
除了超级计算机外,未来计算机还会在哪些方面进行发展呢?
多媒体技术
多媒体技术是进一步拓宽计算机应用领域的新兴技术。它是把文字、数据、图形、图像和声音等信息媒体作为一个集成体有计算机来处理,把计算机带入了一个声、文、图集成的应用领域。多媒体必须要有显示器、键盘、鼠标、操纵杆、视频录象带/盘、摄象机、输入/输出、电讯传送等多种外部设备。多媒体系统把计算机、家用电器、通信设备组成一个整体由计算机统一控制和管理。多媒体系统将对人类社会产生巨大的影响。
网络
当前的计算机系统多是连成网络的计算机系统。所谓网络,是指在地理上分散布置的多台独立计算机通过通信线路互连构成的系统。根据联网区域的大小,计算机网络可分成居域网和远程网。小至一个工厂的各个车间和办公室,大到跨洲隔洋都可构成计算机网。因特网将发展成为人类社会中一股看不见的强大力量--它悄无声息地向人们传递各种信息,以最快、最先进的手段方便人类的工作和生活。现在的因特网发展有将世界变成“地球村”的趋势。
专家认为PC机不会马上消失,而同时单功能或有限功能的终端设备(如手执电脑、智能电话)将挑战PC机作为计算机革新动力的地位。把因特网的接入和电子邮件的功能与有限的计算功能结合起来的“置顶式”计算机如网络电视将会很快流行开来。单功能的终端最终会变得更易应用
智能化计算机
我们对大脑的认识还很肤浅,但是使计算机智能化的工作绝不能等到人们对大脑有足够认识以后才开始。使计算机更聪明,从开始就是人们不断追求的目标。目前用计算机进行的辅助设计、翻译、检索、绘图、写作、下棋、机械作业等方面的发展,已经向计算机的智能化迈进了一步。随着计算机性能的不断提高,人工智能技术在徘徊了50年之后终于找到了露脸的机会,世界头号国际象棋大师卡斯帕罗夫向“深蓝”的俯首称臣,让人脑第一次尝到了在电脑面前失败的滋味。人类从来没有像今天这样深感忧惧,也从来没有像今天这样强烈地感受到认识自身的需要。
目前的计算机,多数是冯·诺依曼型计算机,它在认字、识图、听话及形象思维方面的功能特别差。为了使计算机更加人工智能化,科学家开始使计算机模拟人类大脑的功能,近年来,各先进国家注意开展人工神经网络的研究,向计算机的智能化迈出了重要的一步。
人工神经网络的特点和优越性,主要表现在三个方面:具有自学功能。六如实现图象识别时,只要线把许多不同的图象样板和对应的应识别的结果输入人工神经网络,网络就会通过自学功能,漫漫学会识别类似的图像。自学功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供同经济预测、市场预测、效益预测、其前途是很远大的。
具有联想储存功能。人的大脑是具有两厢功能的。如果有人和你提起你幼年的同学张某某。,你就会联想起张某某的许多事情。用人工神经网络的反馈网络就可以实现这种联想。
具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。
人工神经网络是未来为电子技术应用的新流域。智能计算机的构成,可能就是作为主机的冯·诺依曼机与作为智能外围的人工神经网络的结合。
人们普遍认为智能计算机将像穆尔定律(1965年提出的预测半导体能力将以几何速度增长的定律)的应验那样必然出现。提出这一定律的英特尔公司名誉董事长戈登·穆尔本人也同意这一看法,他认为:“硅智能将发展到很难将计算机和人区分开来的程度。”但是计算机智能不会到此为止。许多科学家断言,机器的智慧会迅速超过阿尔伯特·爱因斯坦和霍金的智慧之和。霍金认为,就像人类可以凭借其高超的捣弄数字的能力来设计计算机一样,智能机器将创造出性能更好的计算机。最迟到下个世纪中叶(而且很可能还要快得多),计算机的智能也许就会超出人类的理解能力。
世纪发现·从图灵机到冯·诺依曼机
英国科学家艾伦·图灵1937年发表著名的《论应用于解决问题的可计算数字》一文。文中提出思考原理计算机——图灵机的概念,推进了计算机理论的发展。1945年图灵到英国国家物理研究所工作,并开始设计自动计算机。1950年,图灵发表题为《计算机能思考吗?》的论文,设计了著名的图灵测验,通过问答来测试计算机是否具有同人类相等的智力。
图灵提出了一种抽象计算模型,用来精确定义可计算函数。图灵机由一个控制器、一条可无限伸延的带子和一个在带子上左右移动的读写头组成。这个在概念上如此简单的机器,理论上却可以计算任何直观可计算的函数。图灵机作为计算机的理论模型,在有关计算机和计算复杂性的研究方面得到广泛应用。
计算机是人类制造出来的信息加工工具。如果说人类制造的其他工具是人类双手的延伸,那么计算机作为代替人脑进行信息加工的工具,则可以说是人类大脑的延伸。最初真正制造出来的计算机是用来解决数值计算问题的。二次大战后期,当时为军事目的进行的一系列破译密码和弹道计算工作,越来越复杂。大量的数据、复杂的计算公式,即使使用电动机械计算器也要耗费相当的人力和时间。在这种背景下,人们开始研制电子计算机。
世界上第一台计算机“科洛萨斯”诞生于英国,“科洛萨斯”计算机是1943年3月开始研制的,当时研制“科洛萨斯”计算机的主要目的是破译经德国“洛伦茨”加密机加密过的密码。使用其他手段破译这种密码需要6至8个星期,而使用‘科洛萨斯’计算机则仅需6至8小时。1944年1月10日,“科洛萨斯”计算机开始运行。自它投入使用后,德军大量高级军事机密很快被破译,盟军如虎添翼。“科洛萨斯”比美国的ENIAC计算机问世早两年多,在二战期间破译了大量德军机密,战争结束后,它被秘密销毁了,故不为人所了解。
尽管第一台电子计算机诞生于英国,但英国没有抓住由计算机引发的技术和产业革命的机遇。相比之下,美国抓住了这一历史机遇,鼓励发展计算机技术和产业,从而崛起了一大批计算机产业巨头,大大促进了美国综合国力的发展。1944年美国国防部门组织了有莫奇利和埃克脱领导的ENIAC计算机的研究小组,当时在普林斯顿大学工作的现代计算机的奠基者美籍匈牙利数学家冯·诺依曼也参加了者像研究工作。1946年研究工作获得成功,制成了世界上第一台电子数字计算机ENIAC。这台用18000只电子管组成的计算机,尽管体积庞大,耗电量惊人,功能有限,但是确实起了节约人力节省时间的作用,而且开辟了一个计算机科学技术的新纪元。这也许连制造它的科学家们也是始料不及的。
最早的计算机尽管功能有限,和现代计算机有很大的差别,但是它已具备了现代计算机的基本部分,那就是运算器、控制器和存储器。
运算器就象算盘,用来进行数值运算和逻辑运算,并获得计算结果。而控制器就象机算机的司令部,指挥着计算机各个部分的工作,它的指挥是靠发出一系列控制信号完成的。
计算机的程序、数据、以及在运算中产生的中间结果以及最后结果都要有个存储的地方,这就是计算机的第三个部件——存储器。
计算机是自动进行计算的,自动计算的根据就是存储于计算机中的程序。现代的计算机都是存储程序计算机,又叫冯·诺依曼机,这是因为存储程序的概念是冯·诺依曼提出的。人们按照要解决的问题的数学描述,用计算机能接受的“语言”编制成程序,输入并存储于计算机,计算机就能按人的意图,自动地高速地完成运算并输出结果。程序要为计算机提供要运算的数据、运算的顺序、进行何种运算等等。
微电子技术的产生使计算机的发展又有了新的机遇,它使计算机小型化成为可能。微电子技术的发展可以追溯到晶体管的出现。1947年美国电报电话公司的贝尔实验室的三位学家巴丁、不赖顿和肖克莱制成第一支晶体管,开始了以晶体管代替电子管的时代。
晶体管的出现可以说是集成电路出台的序幕。晶体管出现后,一些科学家发现,把电路元器件和连线像制造晶体管那样做在一块硅片上可实现电路的小型化。于是,晶体管制造工业经过10年的发展后,1958年出现了第一块集成电路。
微电子技术的发展,集成电路的出现,首先引起了计算机技术的巨大变革。现代计算机多把运算器和控制器做在一起,叫微处理器,由于计算机的心脏——微处理器(计算机芯片)的集成化,使微型计算机应运尔生,并在70-80年代间得到迅速发展,特别是IBM PC个人计算机出现以后,打开了计算机普及的大门,促进了计算机在各行各业的应用,五六十年代,价格昂贵、体积庞大、耗电量惊人的计算机,只能在少数大型军事或科研设施中应用,今天由于采用了大规模集成电路,计算机已经进入普通的办公室和家庭。
标志集成电路水平的指标之一是集成度,即在一定尺寸的芯片上能做出多少个晶体管,从集成电路出现到今天,仅40余年,发展的速度却是惊人的,芯片越做越小,这对生产、生活的影响也是深远的。ENIAC计算机占地150平方米,重达30吨,耗电量几百瓦,其所完成的计算,今天高级一点的袖珍计算器皆可完成。这就是微电子技术和集成电路所创造的奇迹。
2021年,信息技术发展突飞猛进。人工智能、大数据、开源、虚拟现实(VR)、增强现实(AR)……每个领域的发展几乎都可圈可点。
在人工智能领域,人工智能的语言大模型、图文大模型乃至多模态大模型的基本能力已得到了充分展现。例如,阿里巴巴达摩院公布多模态大模型M6最新进展,参数从万亿跃迁至10万亿;鹏城实验室与百度联合发布全球首个知识增强千亿大模型——鹏城—百度·文心,参数规模达到2600亿。
不仅如此,人工智能与其他科学领域的交叉融合也擦出火花。在《科学》近日公布的2021年度科学突破榜单上,AlphaFold和RoseTTA-fold两种基于人工智能预测蛋白质结构的技术位列榜首。
在人机交互领域,扎克伯格将Facebook公司更名为“Meta”时,特斯拉和SpaceX首席执行官埃隆·马斯克则将注意力放在脑机接口上。马斯克认为脑机接口装置将更有可能改变世界,帮助四肢瘫痪或有身体缺陷的人更好地生活和工作,“复杂的脑机接口装置可以让你完全沉浸在虚拟现实中”。此外,今年5月,斯坦福大学开发出一套皮质内脑机接口系统,可以从运动皮层的神经活动中解码瘫痪患者想象中的手写动作,并将其转换为文本。
在超算领域,最值得一提的是,今年11月,我国超算应用团队凭借“超大规模量子随机电路实时模拟”成果斩获国际高性能计算应用领域的最高奖项“戈登贝尔奖”。
在开源方面,RISC-V开源指令集及其生态快速崛起;由华为公司牵头,中国科学院软件研究所、麒麟软件等参与的openEuler操作系统开源社区业已汇聚了7000名活跃开发者,完成8000多个自主维护的开源软件包,催生了10多家厂商的商业发行版……
回望2021年,信息技术版邀请业内专家梳理上述四个领域的发展脉络,展望未来发展趋势。
作者 张双虎
AlphaFold或是2021年人工智能(AI)领域的“一哥”。
近日,《科学》杂志公布了 2021 年度科学突破榜单,AlphaFold 和 RoseTTA-fold 两种基于人工智能预测蛋白质结构的技术位列榜首。
此前几天,由中国工程院院刊评选的“2021全球十大工程成就(近5年全球实践验证有效、有全球影响力的工程科学和技术重大成果)”中,AlphaGo和AlphaFold亦榜上有名。
在接受《中国科学报》采访时,数位专家回望今年人工智能领域取得的成就时,均谈到了AlphaFold。
“面向科学发现的AlphaFold和中国正在构建的人工智能发展生态不能不说。” 浙江大学人工智能研究所所长吴飞对《中国科学报》说。
中科院自动化研究所模式识别国家重点实验室研究员王金桥则提名“用AI进行新冠诊断”“人工智能与生物、制药、材料等科学融合(AI for Science)”和“三模态大模型紫东太初”。
在医学领域,AI识别咳嗽声早已用于肺炎、哮喘、阿尔茨海默氏症等疾病检测。美国麻省理工学院研究人员研发出可以通过分析咳嗽录音识别新冠患者的AI模型,识别出新冠患者咳嗽的准确率为98.5%,其中识别无症状感染者的准确度高达100%。日前,有报道称该模型已用于识别奥密克戎病毒。
“紫东太初首次实现了图—文—音语义统一表达,兼具跨模态理解和生成能力。” 王金桥说,“目前与新华社共同发布的‘全媒体多模态大模型研发计划’,实现对全媒体数据理解与生成的统一建模,打造全栈国产化媒体人工智能平台,已 探索 性地应用于纺织业和 汽车 行业质检等场景。”
12月7日, 科技 部官网公布3份函件,支持哈尔滨、沈阳、郑州3地建设国家新一代人工智能创新发展试验区。至此,我国已经有18个国家新一代人工智能创新发展试验区,这将引领带动中国人工智能创新发展。
“我国正在推动人工智能生态发展,构建良好生态。”吴飞说,“目前已有15个国家新一代人工智能开发创新平台、18个国家新一代人工智能创新发展试验区、8个人工智能创新应用先导区和高等学校设置的人工智能本科专业和交叉学科等人才培养载体。”
“一是大模型,二是人工智能和基础学科的结合。”孙茂松对《中国科学报》说,“语言大模型、图文大模型乃至多模态大模型的基本能力已得到了充分展现,确定了它作为智能信息处理基础软设施的地位。同时,它并非简单地扩大规模,而是对数字资源整合能力和计算能力都提出了挑战。虽然它的局限性也很明显,但它所表现出的某些‘奇特’性质(如少样本学习、深度双下降、基于提示的任务调整等),使学者产生了超大参数规模或会引发质变的期待,从而为新的突破埋下了伏笔。”
今年,人工智能领域从“大炼模型”走向“炼大模型”阶段,从千亿量级到万亿量级,在大模型领域,似乎没有最大,只有更大。
3月,北京智源人工智能研究院发布我国首个超大规模人工智能模型“悟道1.0”。6月,智源就改写了自己的纪录,发布悟道2.0,参数规模达到1.75万亿;9月,浪潮人工智能研究院推出了中文巨量语言模型——源 1.0,参数量达2457亿;11 月,阿里巴巴达摩院公布多模态大模型 M6 最新进展,参数从万亿跃迁至 10 万亿;12月,鹏城实验室与百度联合发布全球首个知识增强千亿大模型——鹏城—百度·文心,参数规模达到2600亿。
与此相应,最近快手和苏黎世联邦理工学院提出了一个新的推荐系统Persia,最高支持100万亿级参数的模型训练。
另一方面,人工智能在基础学科领域不断攻城略地。
7月,DeepMind公司人工智能程序Alphafold2研究成果又登顶《自然》,在结构生物学研究领域,人工智能或带领生物学、医学和药学挺进新天地;11月,美国南加利福尼亚大学研究人员通过脑机连接设备,让猴子玩 游戏 和跑步机,从而进行神经活动数据研究;12月,DeepMind开发的机器学习框架,已帮助人们发现了纯数学领域的两个新猜想,展示了机器学习支持数学研究的潜力。
“今年人工智能在各行业应用方面也取得不小的成绩。”孙茂松说,“人工智能与基础学科结合已显示出巨大潜力,发表了多篇顶级论文,已展露出某种较强的趋势性,即‘人工智能+基础科学’大有可为。”
作者 张双虎
脑机接口、AR眼镜、智能语音、肌电手环、隔空手势识别……2021年,从基础研究到应用落地,人机交互领域风起云涌。不管是智能 健康 、元宇宙,还是自动驾驶领域的蓬勃发展,似乎都表明,人机交互正站在产业化落地的门口。
“我们研发的高通量超柔性神经电极已通过科研临床伦理审批,即将开展脑机接口人体临床试验。”中科院上海微系统所副所长、传感技术联合国家重点实验室副主任陶虎对《中国科学报》说,“安全稳定地大规模采集人体大脑的神经元信号并进行闭环调控,将实现病人感知和运动功能的修复。”
脑机接口技术给患者带来越来越多的便利。今年5月,斯坦福大学研究人员在《自然》发表封面论文,开发出一套皮质内脑机接口系统,可以从运动皮层的神经活动中解码瘫痪患者想象中的手写动作,并将其转换为文本。借助该系统,受试者(因脊髓损失瘫痪)每分钟可以打出近百个字符,且自动更正后的离线准确率超过了 99%。
不久前,马斯克表示,希望明年能在人类身上使用Neuralink 的微芯片装置。该芯片将用于治疗脊髓损伤、帕金森氏症等脑部疾病和神经系统疾病。目前,相关技术正在等待美国食品药品监督管理局的批准。
“脑机接口领域已经蓄积了相当的技术,有望成为解决大脑疾病的利器。”陶虎说,“大家都在抢占临床应用的先机,明年可能会实现技术落地应用。预计两三年内,国内会出现可媲美马斯克Neuralink的独角兽企业。”
“人机交互将引申出新的万亿级市场。”福州大学特聘教授严群这句判断,也囊括了元宇宙这个巨大的市场。
有人称2021年是“元宇宙元年”,也有人认为这不过是“旧瓶装新酒”。但无论如何,元宇宙已是今年人机交互领域绕不开的话题。
“元宇宙是虚拟现实、增强现实和混合现实的综合,它实际上并非新的东西。”北京邮电大学人机交互与认知工程实验室主任刘伟告诉《中国科学报》,“元宇宙是现实世界和虚拟世界跨越未来的发展方向,但还有些技术问题未能很好地解决。”
在真实世界里,人机交互问题和人机环境系统的混合问题未能很好地解决。真实世界的人机交互中,不管是输入、处理还是输出过程中,客观数据、主观信息和知识依然不能完美融合。
刘伟认为,无论真实世界还是虚拟世界,人类和机器决策都有“快决策”和“慢决策”过程。人类决策有时依靠逻辑决策多些,有时直觉决策多些,这种“混合决策”不断变换,而且很难找到变化规律。这方面的问题机器决策目前还未能解决。
“元宇宙还处在画饼的前期阶段。”刘伟说,“因为它的底层机理没有解决——人在真实世界里未能完美解决人机交互的问题,带到元宇宙里同样不能解决。”
谈到人机交互,刘伟认为第二个不能不说的问题是“复杂领域”。
“今年的诺贝尔物理学奖,也给了复杂系统预测气候变化模型的提出者。”刘伟说,“人机交互也是一个复杂系统,它既包括重复的问题,还包括杂乱的、跨域协同的问题。”
刘伟认为,从智能的角度说,复杂系统包括三个重要组成部分,一是人,二是装备(人造物),三是环境。这其实是多个事物之间相互作用,交织在一起、既纠缠又重叠的“人机环系统”问题。
“在人机交互中,机器强在处理‘复’的问题,人擅长管‘杂’的事——跨域协同、事物间平衡等。因为人们还没找到复杂事物的简单运行规律,所以解决所有智能产品、智能系统问题,要从人、机、环这个系统里找它们的结合、融合和交互点。而且,人要在这个系统中处于主导地位。”
人机交互领域引起刘伟重视的第三个现象,是“人工智能帮数学家发现了一些定律”。“最近,DeepMind研发了一个机器学习框架,能帮助数学家发现新的猜想和定理。”刘伟说,“人工智能是一个基本的数学工具,同时,数学又反映了一些基本规律。如果人工智能可以帮助数学家处理一些数学问题,那么,人们将更好地认识复杂系统的简单规律,人机交互方面就可能会取得新突破。”
作者 张云泉(中国科学院计算技术研究所研究员)
今年是我国超算应用实现丰收的一年。
11月中旬在美国举行的全球超算大会(SC21)上,中国超算应用团队凭借基于一台神威新系统对量子电路开创性的模拟(“超大规模量子随机电路实时模拟”),一举摘得国际上高性能计算应用领域的最高学术奖——“戈登贝尔奖”。
同时,在SC 21大学生超算竞赛总决赛上,清华大学超算团队再次夺得总冠军,实现SC竞赛四连冠。这些大规模应用软件可扩展性和性能调优方面的成绩表明,我国在并行软件方面的发展方兴未艾。
回到超算对产业的驱动来看,我们要重提“算力经济”一词。早在2018年,我们提出“算力经济”概念,认为以超级计算为核心的算力经济将成为衡量一个地方数字经济发展程度的代表性指标和新旧动能转换的主要手段。
综合近几年的发展趋势,我们认为高性能计算当前发展趋势已充分表明,随着超算与云计算、大数据、AI的融合创新,算力已成为当前整个数字信息 社会 发展的关键,算力经济已经登上 历史 舞台。
通过对2021年中国高性能计算机发展现状综合分析,可以总结出当前高性能计算正呈现出以下几个特点。
首先,高性能计算与云计算已经深度结合。高性能计算通常是以MPI、高效通信、异构计算等技术为主,偏向独占式运行,而云计算有弹性部署能力与容错能力,支持虚拟化、资源统一调度和弹性系统配置。
随着技术发展,超级计算与容器云正融合创新,高性能云成为新的产品服务,AWS、阿里云、腾讯、百度以及商业化超算的代表“北龙超云”,都已基于超级计算与云计算技术推出了高性能云服务和产品。
其次,超算应用从过去的高精尖向更广、更宽的方向发展。随着超级计算机的发展,尤其是使用成本的不断下降,其应用领域也从具有国家战略意义的精密研制、信息安全、石油勘探、航空航天和“高冷”的科学计算领域向更广泛的国民经济主战场快速扩张,比如制药、基因测序、动漫渲染、数字电影、数据挖掘、金融分析及互联网服务等,可以说已经深入到国民经济的各行各业。
从近年中国高性能计算百强排行榜(HPC TOP100)来看,超算系统过去主要集中于科学计算、政府、能源、电力、气象等领域,而近5年互联网公司部署的超算系统占据了相当大比例,主要应用为云计算、机器学习、人工智能、大数据分析以及短视频等。这些领域对于计算需求的急剧上升表明,超算正与互联网技术进行融合。
从HPC TOP100榜单的Linpack性能份额看,算力服务以46%的比例占据第一;超算中心占24%,排名第二;人工智能、云计算和短视频分别以9%、5%和4%紧随其后。
可以看出,人工智能占比的持续增加与机器学习等算法和应用的快速崛起,以及大数据中的深度学习算法的广泛应用有很大关系。互联网公司通过深度学习算法重新发现了超级计算机,特别是GPU加速的异构超级计算机的价值,纷纷投入巨资建设新系统。
综合来看,目前的算力服务、超算中心、人工智能、科学计算等领域是高性能计算的主要用户,互联网、大数据,特别是AI领域增长强劲。
再次,国家层面已经制订了战略性的算力布局计划。今年5月,国家发展改革委等四部门联合发布《全国一体化大数据中心协同创新体系算力枢纽实施方案》,提出在京津冀、长三角、粤港澳大湾区、成渝以及贵州、内蒙古、甘肃、宁夏建设全国算力网络国家枢纽节点,启动实施“东数西算”工程,力促把东部的数据送到西部进行存储和计算,同时在西部建立算力节点,改善数字基础设施不平衡的布局,有效优化数据中心的布局结构,实现算力升级,构建国家算力网络体系。
最后,人工智能的算力需求已成为算力发展主要动力。机器学习、深度学习等算法革新和通过物联网、传感器、智能手机、智能设备、互联网技术搜集的大数据,以及由超级计算机、云计算等组成的超级算力,被公认为是人工智能时代的“三驾马车”,共同掀起最新一轮的人工智能革命。
在人工智能蓬勃发展这一背景下,虚拟化云计算向高性能容器云计算演进,大数据与并行计算、机器学习融合创新就成为了产业发展的最新方向。
此外,在智能计算评测方面,我国已经提出了包括AIPerf 500在内的众多基准测试程序,这是对传统Linpack测试标准的有力补充。
这些发展表明超算技术向产业渗透的速度加快,我们已经进入一个依靠算力的人工智能时代,这也是未来发展的必然趋势之一。随着用户对算力需求的不断增长,算力经济必将在未来 社会 发展中占据重要地位。
作者 武延军(中国科学院软件研究所研究员)
开源发展可圈可点并非只是今年的事。最近几年,开源领域发生了很多重要的事情。
例如,RISC-V开源指令集及其生态的快速崛起。这与上世纪90年代初Linux诞生一样。当时,UNIX和Windows是主流,很少有人能够预料到今天以Linux为内核的操作系统已经遍及人们生活的方方面面。
如今,人们每天使用的App,超过80% 概率是运行在以Linux为内核的安卓操作系统上,而且,支撑其业务的后端服务器上运行的操作系统很大概率也是Linux发行版。
所以,今天的RISC-V也同样可能被低估,认为其不成熟,很难与ARM和X86抗衡。但也许未来RISC-V就像Linux一样,最终成为全球范围内的主流指令集生态,产品遍及方方面面。
仅2020年,RISC-V International(RVI,RISC-V基金会迁入瑞士之后的新名称)的会员数增长了133%。其实RVI迁入瑞士这件事情本身也意义重大,是一次开源领域面对大国竞争保持初心不“选边站”的经典案例,值得全球其他开源基金会参考。
在国内,2019年底,华为公司牵头,中国科学院软件研究所、麒麟软件等参与的openEuler操作系统开源社区正式成立。在短短的两年内,社区已经汇聚了7000名活跃开发者,完成8000多个自主维护的开源软件包,催生了10多家厂商的商业发行版。
这是中国基础软件领域第一个真正意义上的“根社区”,虽然与20多年 历史 的Debian、Fedora还有差距,但迈出了重要一步,对学术研究、技术研发、产业创新来说,终于有了国内主导的、可以长期积淀的新平台。
同时,华为在遭遇安卓操作系统GMS(谷歌移动服务)海外断供之后,推出了鸿蒙操作系统HarmonyOS,并在开放原子开源基金会下启动开源项目OpenHarmony。
目前OpenHarmony短时间内已经吸引了国内众多厂商参与,也侧面反映了国内产业界对新一代万物互联操作系统的旺盛需求。尽管其在生态规模和技术完整程度方面与安卓仍有差距,但毕竟迈出了打造自主生态的第一步。
这相当于为源代码合理使用划定了一个边界,即合理使用仅限于接口,一旦深入到接口的实现代码,则需要遵守相关许可。这对开源知识产权的法律界定具有重要参考意义。
今年5月,《2021中国开源发展蓝皮书》重磅发布。它不仅系统梳理了我国开源人才、项目、社区、组织、教育、商业的现状,并给出发展建议,而且为国家政府相关管理部门制定开源政策、布局开源战略提供参考,为科研院所、 科技 企业以及开源从业者提供更多的案例参考和数据支撑。
而不论是开源软件向围绕开放指令集的开源软硬件生态发展,还是开源有严格的法律边界约束,抑或是国内龙头企业正尝试通过开源 探索 解决“卡脖子”问题,且已经取得了一定的效果……众多案例都指向一个方向——开源趋势不可阻挡。因为它源自人类分享知识、协同创造的天性,也是人类文明在数字时代薪火相传的重要模式。
当然,不可否认的是,开源还存在很多问题,例如,开源软件供应链安全的问题。这里的安全既有传统意义上软件质量、安全漏洞的问题,也有开源软件无法得到持续有效维护的问题(如OpenSSL在出现HeartBleed问题时只有两位兼职维护者,log4j出现问题时只有三位兼职维护者),更有大国竞争导致的“断供”问题(如GitHub曾限制伊朗开发者访问)。
随着开源软件向GitHub这类商业平台的集中,这一问题会更加突出,甚至演变为重大风险。开源软件这一本应属于全人类的智慧资产,可能变为实施“长臂管辖”的武器。为了避免这一问题,开源代码托管平台、开源软件构建发布平台等公共基础设施需要“去中心化”。世界需要多个开源软件基础设施,以最大程度消除政治力量对开源社区的威胁。
对于中国来说,随着开源软件成为众多科研、工业等重大基础设施的重要支撑部分,开源软件本身也要有一个基础设施,具备代码托管、编译、构建、测试、发布、运维等功能,保证开源软件供应的安全性和连续性,进而增强各行各业使用开源软件的信心。
未来,核心技术创新与开源贡献引领将成为国内企业发展的新动力,或将我国开源事业推向另一个高潮。
本文地址:http://www.dadaojiayuan.com/jiankang/303075.html.
声明: 我们致力于保护作者版权,注重分享,被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理,本站部分文字与图片资源来自于网络,转载是出于传递更多信息之目的,若有来源标注错误或侵犯了您的合法权益,请立即通知我们(管理员邮箱:douchuanxin@foxmail.com),情况属实,我们会第一时间予以删除,并同时向您表示歉意,谢谢!